ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 391]      



Задача 60753

Темы:   [ Простые числа и их свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10

При помощи задачи 60752 докажите, что существует бесконечно много простых чисел вида  p = 4k + 1.

Прислать комментарий     Решение

Задача 64344

Темы:   [ Исследование квадратного трехчлена ]
[ Доказательство от противного ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Теорема о промежуточном значении. Связность ]
Сложность: 3+
Классы: 9,10

Даны различные действительные числа a, b, с. Докажите, что хотя бы два из уравнений  (x – a)(x – b) = x – c,  (x – b)(x – c) = x – a,
(x – c)(x – a) = x – b  имеют решение.

Прислать комментарий     Решение

Задача 64670

Темы:   [ Турниры и турнирные таблицы ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 10,11

В турнире по игре в "крестики – нолики", проведённом по системе "проиграл – выбыл", участвовали 18 школьников. Каждый день играли одну партию, участников которой выбирали жребием из ещё не выбывших школьников. Каждый из шестерых школьников утверждает, что сыграл ровно четыре партии. Не ошибается ли кто-то из них?

Прислать комментарий     Решение

Задача 64769

Темы:   [ Делимость чисел. Общие свойства ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 9,10,11

Назовём натуральное число хорошим, если среди его делителей есть ровно два простых числа.
Могут ли 18 подряд идущих натуральных чисел быть хорошими?

Прислать комментарий     Решение

Задача 64941

Темы:   [ Уравнения в целых числах ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 6,7

Можно ли в кружках (см. рисунок) разместить различные натуральные числа таким образом, чтобы суммы трёх чисел вдоль каждого отрезка оказались равными?

Прислать комментарий     Решение

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 391]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .