ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 220]      



Задача 65179

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Найдите все строго возрастающие последовательности натуральных чисел a1, a2, ..., an, ..., в которых  a2 = 2  и  anm = anam  для любых натуральных n и m.

Прислать комментарий     Решение

Задача 65204

Темы:   [ Принцип Дирихле (площадь и объем) ]
[ Принцип крайнего (прочее) ]
[ Вспомогательные подобные треугольники ]
Сложность: 4-
Классы: 9,10,11

Единичный квадрат разрезан на n треугольников. Докажите, что одним из треугольников можно накрыть квадрат со стороной 1/n.

Прислать комментарий     Решение

Задача 65825

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Принцип крайнего (прочее) ]
[ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9,10,11

На каждой клетке шахматной доски вначале стоит по ладье. Каждым ходом можно снять с доски ладью, которая бьет нечётное число ладей. Какое наибольшее число ладей можно снять? (Ладьи бьют друг друга, если они стоят на одной вертикали или горизонтали и между ними нет других ладей.)

Прислать комментарий     Решение

Задача 65833

Темы:   [ Разбиения на пары и группы; биекции ]
[ Принцип крайнего (прочее) ]
[ Алгебраические неравенства (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 9,10,11

На окружности расставлено несколько положительных чисел, каждое из которых не больше 1. Докажите, что можно разделить окружность на три дуги так, что суммы чисел на соседних дугах будут отличаться не больше чем на 1. (Если на дуге нет чисел, то сумма на ней считается равной нулю.)

Прислать комментарий     Решение

Задача 65904

Темы:   [ Основная теорема арифметики. Разложение на простые сомножители ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 7,8

Какое наибольшее количество натуральных чисел, не превосходящих 2016, можно отметить так, чтобы произведение любых двух отмеченных чисел было бы точным квадратом?

Прислать комментарий     Решение

Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 220]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .