ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 117]      



Задача 64457

Темы:   [ Вневписанные окружности ]
[ Три прямые, пересекающиеся в одной точке ]
[ Вписанные и описанные окружности ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

Вневписанная окружность, соответствующая вершине A прямоугольного треугольника ABC  (∠B = 90°),  касается продолжений сторон AB, AC в точках A1, A2 соответственно; аналогично определим точки C1, C2. Докажите, что перпендикуляры, опущенные из точек A, B, C на прямые C1C2, A1C1, A1A2 соответственно, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 66315

Темы:   [ Вневписанные окружности ]
[ Длины сторон (неравенства) ]
[ Против большей стороны лежит больший угол ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 4-
Классы: 9,10,11

Автор: Пешнин А.

Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника.

Прислать комментарий     Решение

Задача 108135

Темы:   [ Вневписанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Окружность, вписанная в угол ]
[ Вписанные и описанные окружности ]
Сложность: 4-
Классы: 8,9

На одной стороне угла с вершиной O взята точка A, а на другой – точки B и C, причём точка B лежит между O и C. Проведена окружность с центром O1, вписанная в треугольник OAB, и окружность с центром O2, касающаяся стороны AC и продолжений сторон OA и OC треугольника AOC. Докажите, что если  O1A = O2A,  то треугольник ABC равнобедренный.

Прислать комментарий     Решение

Задача 108959

Темы:   [ Вневписанные окружности ]
[ Вспомогательные равные треугольники ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9

Вневписанные окружности касаются сторон AB и AC треугольника ABC в точках P и Q соответственно. Точка L – середина PQ, точка M – середина BC. Точки L1 и L2 симметричны точке L относительно середин отрезков BM и CM соответственно. Докажите, что  L1P = L2Q.

Прислать комментарий     Решение

Задача 52684

Темы:   [ Вневписанные окружности ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 4
Классы: 8,9

В треугольнике ABC с периметром 2p острый угол BAC равен $ \alpha$. Окружность с центром в точке O касается стороны BC и продолжения сторон AB и AC в точках K и L соответственно. Найдите площадь треугольника AOL.

Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 117]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .