ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 140]      



Задача 54110

Темы:   [ Прямоугольники и квадраты. Признаки и свойства ]
[ Поворот помогает решить задачу ]
[ Поворот на 90° ]
Сложность: 3+
Классы: 8,9

На сторонах AB, BC, CD, DA квадрата ABCD взяты соответственно точки N, K, L, M, делящие эти стороны в одном и том же отношении (при обходе по часовой стрелке). Докажите, что KLMN — также квадрат.

Прислать комментарий     Решение


Задача 76518

Темы:   [ Повороты на 60° и 120° ]
[ Поворот помогает решить задачу ]
Сложность: 3+
Классы: 8,9

На прямой даны 3 точки A, B, C. На отрезке AB построен равносторонний треугольник ABC1, на отрезке BC построен равносторонний треугольник BCA1. Точка M — середина отрезка AA1, точка N — середина отрезка CC1. Доказать, что треугольник BMN — равносторонний. (Точка B лежит между точками A и C; точки A1 и C1 расположены по одну сторону от прямой AB.)
Прислать комментарий     Решение


Задача 55724

Темы:   [ Правильный (равносторонний) треугольник ]
[ Поворот помогает решить задачу ]
Сложность: 4-
Классы: 8,9

На отрезке AE по одну сторону от него построены равносторонние треугольники ABC и CDE;M и P - середины отрезков AD и BE. Докажите, что треугольник CPM равносторонний.

Прислать комментарий     Решение


Задача 57919

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 4-
Классы: 8,9

На сторонах BC и CD квадрата ABCD взяты точки M и K соответственно, причем $ \angle$BAM = $ \angle$MAK. Докажите, что BM + KD = AK.
Прислать комментарий     Решение


Задача 57920

Темы:   [ Поворот на 90° ]
[ Поворот помогает решить задачу ]
[ Взаимное расположение высот, медиан, биссектрис и проч. ]
Сложность: 4-
Классы: 8,9

В треугольнике ABC проведены медиана CM и высота CH. Прямые, проведенные через произвольную точку P плоскости перпендикулярно CA, CM и CB, пересекают прямую CH в точках A1, M1 и B1. Докажите, что A1M1 = B1M1.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 140]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .