ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



Задача 109378

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема синусов ]
Сложность: 3
Классы: 10,11

Найдите объём треугольной пирамиды, пять рёбер которой равны 2, а шестое равно .
Прислать комментарий     Решение


Задача 110324

Темы:   [ Объем тетраэдра и пирамиды ]
[ Отношение объемов ]
[ Подобие ]
Сложность: 3
Классы: 10,11

На боковом ребре пирамиды взяты две точки, делящие ребро на три равные части. Через них проведены плоскости, параллельные основанию. Найдите объём части пирамиды, заключённой между этими плоскостями, если объём всей пирамиды равен 1.
Прислать комментарий     Решение


Задача 110409

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
Сложность: 3
Классы: 10,11

Площади граней ABC и ADC тетраэдра ABCD равны P и Q , двугранный угол между ними равен α . Найдите площадь треугольника, по которому биссекторная плоскость указанного угла пересекает тетраэдр.
Прислать комментарий     Решение


Задача 110410

Темы:   [ Объем тетраэдра и пирамиды ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

В основании пирамиды ABCD лежит равнобедренный прямоугольный треугольник ABC с гипотенузой AB=4 . Высота пирамиды равна 2, а её основание совпадает с серединой AC . Найдите двугранный угол между гранями ABD и ADC .
Прислать комментарий     Решение


Задача 110411

Темы:   [ Объем тетраэдра и пирамиды ]
[ Теорема о трех перпендикулярах ]
[ Двугранный угол ]
Сложность: 3
Классы: 10,11

В основании пирамиды ABCD лежит прямоугольный треугольник ABC с гипотенузой AC , DC – высота пирамиды, AB=1 , BC=2 , CD=3 . Найдите двугранный угол между плоскостями ADB и ADC .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .