ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



Задача 103816

Темы:   [ Наглядная геометрия в пространстве ]
[ Развертка помогает решить задачу ]
[ Раскраски ]
Сложность: 3
Классы: 8,9

Придумайте раскраску граней кубика, чтобы в трёх различных положениях он выглядел, как показано на рисунке. (Укажите, как раскрасить невидимые грани, или нарисуйте развёртку.)

Прислать комментарий     Решение


Задача 103839

Тема:   [ Наглядная геометрия в пространстве ]
Сложность: 3
Классы: 7,8,9

Из Москвы вылетел вертолёт, который пролетел 300 км на юг, потом 300 км на запад, 300 км на север и 300 км на восток, после чего приземлился. Оказался ли он южнее Москвы, севернее её или на той же широте? Оказался ли он восточнее Москвы, западнее Москвы или на той же долготе?
Прислать комментарий     Решение


Задача 64380

Темы:   [ Наглядная геометрия в пространстве ]
[ Перегруппировка площадей ]
Сложность: 3+
Классы: 6,7

Автор: Шноль Д.Э.

Иван Иванович построил сруб, квадратный в основании, и собирается покрывать его крышей. Он выбирает между двумя крышами одинаковой высоты: двускатной и четырёхскатной (см. рисунки). На какую из этих крыш понадобится больше жести?

Прислать комментарий     Решение

Задача 65449

Темы:   [ Наглядная геометрия в пространстве ]
[ Куб ]
[ Равные треугольники. Признаки равенства (прочее) ]
Сложность: 3+
Классы: 6,7,8

Автор: Фольклор

В каждой вершине куба сидело по мухе. Потом все мухи разом взлетели и сели по одной в каждую вершину в каком-то другом порядке.
Докажите, что найдутся три мухи, которые в начальном и конечном положении сидели в вершинах равных треугольников.

Прислать комментарий     Решение

Задача 65930

Темы:   [ Наглядная геометрия в пространстве ]
[ Разрезания на параллелограммы ]
[ Развертка помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Легко оклеить поверхность куба шестью ромбами (например, шестью квадратами). А можно ли оклеить поверхность куба (без щелей и наложений) менее чем шестью ромбами (не обязательно одинаковыми)?

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 59]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .