ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Богданов И.И.

Илья Игоревич Богданов - доцент Московского физико-технического института, кандидат физико-математических наук, член жюри Всероссийской олимпиады школьников по математике

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 177]      



Задача 64702

Темы:   [ Величина угла между двумя хордами и двумя секущими ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9

В равные углы X1OY и YOX2 вписаны окружности ω1 и ω2, касающиеся сторон OX1 и OX2 в точках A1 и A2 соответственно, а стороны OY – в точках B1 и B2. C1 – вторая точка пересечения A1B2 и ω1, а C2 – вторая точка пересечения A2B1 и ω2. Докажите, что C1C2 – общая касательная к окружностям.

Прислать комментарий     Решение

Задача 64714

Темы:   [ Системы точек ]
[ Теория алгоритмов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10

В магазине в ряд висят 21 белая и 21 фиолетовая рубашка. Найдите такое минимальное k, что при любом изначальном порядке рубашек можно снять k белых и k фиолетовых рубашек так, чтобы оставшиеся белые рубашки висели подряд и оставшиеся фиолетовые рубашки тоже висели подряд.

Прислать комментарий     Решение

Задача 64766

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Центральная симметрия (прочее) ]
[ Симметрия помогает решить задачу ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 4-
Классы: 8,9,10

Трапеция ABCD с основаниями AB и CD вписана в окружность Ω. Окружность ω проходит через точки C, D и пересекает отрезки CA, CB в точках A1, B1 соответственно. Точки A2 и B2 симметричны точкам A1 и B1 относительно середин отрезков CA и CB соответственно. Докажите, что точки A, B, A2 и B2 лежат на одной окружности.

Прислать комментарий     Решение

Задача 64782

Темы:   [ Сфера, описанная около тетраэдра ]
[ Сферы (прочее) ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Центральная симметрия помогает решить задачу ]
Сложность: 4-
Классы: 10,11

Сфера ω проходит через вершину S пирамиды SABC и пересекает рёбра SA, SB и SC вторично в точках A1, B1 и C1 соответственно. Сфера Ω, описанная около пирамиды SABC, пересекается с ω по окружности, лежащей в плоскости, параллельной плоскости (ABC). Точки A2, B2 и C2 симметричны точкам A1, B1 и C1 относительно середин рёбер SA, SB и SC соответственно. Докажите, что точки A, B, C, A2, B2 и C2 лежат на одной сфере.

Прислать комментарий     Решение

Задача 64843

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Даны 15 целых чисел, среди которых нет одинаковых. Петя записал на доску все возможные суммы по 7 из этих чисел, а Вася – все возможные суммы по 8 из этих чисел. Могло ли случиться, что они выписали на доску одни и те же наборы чисел? (Если какое-то число повторяется несколько раз в наборе у Пети, то и у Васи оно должно повторяться столько же раз.)

Прислать комментарий     Решение

Страница: << 9 10 11 12 13 14 15 >> [Всего задач: 177]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .