Страница:
<< 33 34 35 36 37 38 39 [Всего задач: 194]
|
|
|
Сложность: 5 Классы: 9,10,11
|
Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
Дано натуральное число $n$. Натуральное число $m$ назовём
удачным, если найдутся $m$ последовательных натуральных чисел, сумма которых равна сумме $n$ следующих за ними натуральных чисел. Докажите, что количество удачных чисел нечётно.
|
|
|
Сложность: 5 Классы: 9,10,11
|
В городе Удоеве выборы мэра проходят следующим
образом. Если в очередном туре голосования никто из кандидатов не набрал больше
половины голосов, то проводится следующий тур с участием всех кандидатов, кроме
последнего по числу голосов. (Никогда два кандидата не набирают голосов поровну;
если кандидат набрал больше половины голосов, то он становится мэром и выборы
заканчиваются.) Каждый избиратель в каждом туре голосует за одного из
кандидатов. Если это кандидат вышел в следующий тур, то избиратель снова
голосует за него. Если же кандидат выбыл, то все его избиратели голосуют за
одного и того же кандидата из числа оставшихся.
На очередных выборах
баллотировалось 2002 кандидата. Мэром стал Остап Бендер, занявший в первом туре
k-е место по числу голосов. Определите наибольшее возможное значение
k, если Остап Бендер был избран
а) в 1002-м туре;
б) в 1001-м
туре.
|
|
|
Сложность: 5+ Классы: 9,10,11
|
Для чисел 1, ..., 1999, расставленных по окружности, вычисляется сумма произведений всех наборов из 10 чисел, идущих подряд.
Найдите расстановку чисел, при которой полученная сумма наибольшая.
Страница:
<< 33 34 35 36 37 38 39 [Всего задач: 194]