|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Александр Васильевич Шаповалов (род. 1955 г.) - автор книг "Принцип узких мест", "Турнир городов: мир математики в задачах" и других популярных книг по математике. Ответственный редактор серии "Школьные математические кружки". Ведущий преподаватель Кировской ЛМШ и Московских сборов. Член методической комиссии Турнира городов, турнира им. Савина, московского Математического праздника и других соревнований. См. сайт www.ashap.info. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости даны 2018 точек, все попарные расстояния между которыми различны. Для каждой точки отметили ближайшую к ней среди остальных. Какое наименьшее число точек может оказаться отмечено? |
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 323]
В треугольнике ABC на стороне AB выбрана точка K и проведены биссектриса KE треугольника AKC и высота KH треугольника BKC. Оказалось, что угол EKH – прямой. Найдите BC, если HC = 5.
Йог: Самый быстрый смелее меня. Бульдог: Я быстрее самого ловкого. Носорог: Я ловчее самого смелого. Кто из них самый медленный?
Существует ли в пространстве замкнутая самопересекающаяся ломаная, которая пересекает каждое свое звено ровно один раз, причём в его середине?
На рисунке можно найти 9 прямоугольников. Известно, что у каждого из них длина и ширина – целые.
Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 323] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|