Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 316]
По кругу разложено чётное количество груш. Массы любых двух соседних отличаются не более чем на 1 г. Докажите, что можно все груши объединить в пары и разложить по кругу таким образом, чтобы массы любых двух соседних пар тоже отличались не более чем на 1 г.
|
|
Сложность: 4+ Классы: 10,11
|
Назовем медианой системы 2
n точек плоскости прямую, проходящую ровно
через две из них, по обе стороны от которой точек этой системы поровну.
Какое наименьшее количество медиан может быть у системы из 2
n точек, никакие
три из которых не лежат на одной прямой?
|
|
Сложность: 5- Классы: 6,7,8,9,10,11
|
Петя разрезал прямоугольный лист бумаги по прямой. Затем он разрезал по прямой один из получившихся кусков. Затем он проделал то же самое с одним из трёх получившихся кусков и т.д. Докажите, что после достаточного количества разрезаний можно будет выбрать среди получившихся кусков 100 многоугольников с одинаковым числом вершин (например, 100 треугольников или 100 четырёхугольников и т.д.).
|
|
Сложность: 5- Классы: 9,10,11
|
Муравей ползает по замкнутому маршруту по рёбрам додекаэдра, нигде не разворачиваясь назад. Маршрут проходит ровно два раза по каждому ребру.
Докажите, что некоторое ребро муравей оба раза проходит в одном и том же направлении.
|
|
Сложность: 5- Классы: 8,9,10
|
За круглым столом сидят десять человек, перед каждым – несколько орехов.
Всего орехов – сто. По общему сигналу каждый передаёт часть своих орехов соседу справа: половину, если у него (у того, кто передаёт) было чётное число, или один орех плюс половину остатка – если нечётное число. Такая операция проделывается второй раз, затем третий и так далее, до бесконечности. Докажите, что через некоторое время у всех станет по десять орехов.
Страница:
<< 55 56 57 58
59 60 61 >> [Всего задач: 316]