Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 201]
|
|
Сложность: 4 Классы: 10,11
|
Пусть I – центр сферы, вписанной в тетраэдр ABCD, A', B', C', D' – центры описанных сфер тетраэдров IBCD, ICDA, IDBA, IABC соответственно.
Докажите, что описанная сфера тетраэдра ABCD целиком лежит внутри описанной сферы тетраэдра A'B'C'D'.
Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.
Дан остроугольный треугольник ABC. Постройте на сторонах BC, CA, AB точки A', B', C' так, чтобы выполнялись следующие условия:
- A'B' || AB;
- C'C – биссектриса угла A'C'B';
- A'C' + B'C' = AB.
|
|
Сложность: 4 Классы: 9,10,11
|
Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?
В турнире по гандболу участвуют 20 команд.
После того как каждая
команда сыграла с каждой по разу, оказалось, что количество очков у
всех команд разное.
После того как каждая команда сыграла с каждой по
второму разу, количество очков у всех команд стало одинаковым.
В гандболе за победу команда получает 2 очка, за ничью 1 очко, за
поражение — 0 очков.
Верно ли, что найдутся две команды, по разу
выигравшие друг у друга?
Страница: << 18 19 20 21 22 23 24 >> [Всего задач: 201]