Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 196]
В турнире по гандболу участвуют 20 команд.
После того как каждая
команда сыграла с каждой по разу, оказалось, что количество очков у
всех команд разное.
После того как каждая команда сыграла с каждой по
второму разу, количество очков у всех команд стало одинаковым.
В гандболе за победу команда получает 2 очка, за ничью 1 очко, за
поражение — 0 очков.
Верно ли, что найдутся две команды, по разу
выигравшие друг у друга?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Равнобокая трапеция $ABCD$ с основаниями $AD$ и $BC$ вписана в окружность с центром $O$. Прямая $BO$ пересекает отрезок $AD$ в точке $E$. Пусть $O_1$ и $O_2$ — центры описанных окружностей треугольников $ABE$ и $DBE$ соответственно. Докажите, что точки $O_1, O_2, O, C$ лежат на одной окружности.
|
|
Сложность: 4 Классы: 10,11
|
Дан эллипс $\Gamma$ и его хорда $AB$. Найдите геометрическое место ортоцентров вписанных в $\Gamma$ треугольников $ABC$.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Во вписанном пятиугольнике отметили середины четырех сторон, после чего сам пятиугольник стерли. Восстановите его.
|
|
Сложность: 4 Классы: 9,10,11
|
В неравнобедренном треугольнике $ABC$ точки $A_0$, $B_0$, $C_0$ – середины сторон $BC$, $CA$, $AB$ соответственно. Биссектриса угла $C$ пересекает прямые $A_0C_0$ и $B_0C_0$ в точках $B_1$ и $A_1$. Докажите, что прямые $AB_1$, $BA_1$ и $A_0B_0$ пересекаются в одной точке.
Страница:
<< 18 19 20 21
22 23 24 >> [Всего задач: 196]