Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 196]
Найдите геометрическое место точек пересечения
высот треугольников, у которых даны середина одной стороны и
основания высот, опущенных на две другие.
|
|
Сложность: 4 Классы: 9,10,11
|
В шестиугольнике ABCDEF AB = BC, CD = DE, EF = FA и ∠A = ∠C = ∠E.
Докажите, что главные диагонали шестиугольника пересекаются в одной точке.
|
|
Сложность: 4 Классы: 8,9,10
|
Прямая, проходящая через центр описанной окружности и точку пересечения высот неравностороннего треугольника ABC, делит его периметр и площадь в одном и том же отношении. Найдите это отношение.
|
|
Сложность: 4 Классы: 9,10,11
|
Высоты AA' и CC' остроугольного треугольника ABC
пересекаются в точке H. Точка B0 – середина стороны AC.
Докажите, что точка пересечения прямых, симметричных BB0 и HB0 относительно биссектрис углов B и AHC соответственно, лежит на прямой A'C'.
|
|
Сложность: 4 Классы: 8,9,10,11
|
Найдите геометрическое место центров правильных треугольников, стороны которых проходят через три заданные точки A, B, C (то есть на каждой стороне или ее продолжении лежит ровно одна из заданных точек).
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 196]