Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 208]
|
|
|
Сложность: 4 Классы: 9,10,11
|
Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.
|
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Правильный треугольник разрезан на треугольники, каждый из которых либо прямоугольный, либо равнобедренный. Все прямоугольные треугольники равны друг другу, все равнобедренные – тоже. Обязательно ли все углы равнобедренных треугольников кратны $30^\circ$?
|
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Каждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Равносторонний треугольник разрезан на белые и чёрные треугольники. Известно, что все белые треугольники — прямоугольные и равны друг другу, а все чёрные — равнобедренные и тоже равны друг другу. Обязательно ли кратны $30^\circ$ все углы
а) у белых треугольников;
б) у чёрных треугольников?
Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.
Страница:
<< 21 22 23 24
25 26 27 >> [Всего задач: 208]