ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Заславский А.А.

Алексей Александрович Заславский (род.1960 г.) - к.т.н. (1990), старший научный сотрудник ЦЭМИ РАН, председатель жюри олимпиады им. Шарыгина, редактор Journal of Classical Geometry, член редколлегии "Кванта".

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 208]      



Задача 67437

Темы:   [ Вписанный угол равен половине центрального ]
[ Биссектриса делит дугу пополам ]
[ Изогональное сопряжение ]
Сложность: 4
Классы: 9,10,11

Точки $P$, $Q$ лежат внутри окружности $\omega$. Серединный перпендикуляр к отрезку $PQ$ пересекает $\omega$ в точках $A$ и $D$. Окружность с центром $D$, проходящая через $P$ и $Q$, пересекает $\omega$ в точках $B$ и $C$. Отрезок $PQ$ лежит внутри треугольника $ABC$. Докажите, что $\angle ACP = \angle BCQ$.
Прислать комментарий     Решение


Задача 67448

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 7,8,9,10,11

Правильный треугольник разрезан на треугольники, каждый из которых либо прямоугольный, либо равнобедренный. Все прямоугольные треугольники равны друг другу, все равнобедренные – тоже. Обязательно ли все углы равнобедренных треугольников кратны $30^\circ$?
Прислать комментарий     Решение


Задача 67452

Темы:   [ Раскраски ]
[ Оценка + пример ]
Сложность: 4
Классы: 7,8,9,10,11

Каждая клетка квадрата $100\times 100$ покрашена либо в белый, либо в чёрный цвет. Оказалось, что у каждой белой клетки ровно две соседних с ней по стороне клетки покрашены в белый цвет, а у каждой чёрной клетки ровно две соседних с ней по стороне клетки покрашены в чёрный цвет. Найдите максимальное возможное количество чёрных клеток.
Прислать комментарий     Решение


Задача 67511

Темы:   [ Правильный (равносторонний) треугольник ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 8,9,10,11

Равносторонний треугольник разрезан на белые и чёрные треугольники. Известно, что все белые треугольники — прямоугольные и равны друг другу, а все чёрные — равнобедренные и тоже равны друг другу. Обязательно ли кратны $30^\circ$ все углы а) у белых треугольников; б) у чёрных треугольников?
Прислать комментарий     Решение


Задача 103934

Темы:   [ Окружность, вписанная в угол ]
[ Вписанный угол равен половине центрального ]
[ Равнобедренные, вписанные и описанные трапеции ]
[ Пересекающиеся окружности ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
[ Теорема синусов ]
[ Вневписанные окружности ]
Сложность: 4
Классы: 8,9

Две окружности радиуса 1 пересекаются в точках X, Y, расстояние между которыми также равно 1. Из точки C одной окружности проведены касательные CA, CB к другой. Прямая CB вторично пересекает первую окружность в точке A'. Найти расстояние AA'.

Прислать комментарий     Решение

Страница: << 21 22 23 24 25 26 27 >> [Всего задач: 208]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .