Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 196]
|
|
Сложность: 4- Классы: 9,10,11
|
Окружность Ω1 проходит через центр окружности Ω2. Из точки C, лежащей на Ω1, проведены касательные к Ω2, вторично пересекающие Ω1 в точках A и B. Докажите, что отрезок AB перпендикулярен линии центров окружностей.
|
|
Сложность: 4- Классы: 8,9,10
|
В неравнобедренном треугольнике две медианы равны двум высотам. Найдите отношение третьей медианы к третьей высоте.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Три окружности проходят через точку P, а вторые точки их пересечения A, B, C лежат на одной прямой. A1, B1, C1 – вторые точки пересечения прямых AP, BP, CP
с соответствующими окружностями. C2 – точка пересечения
прямых AB1 и BA1. A2, B2 определяются аналогично.
Докажите, что треугольники A1B1C1 и A2B2C2 равны.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Два выпуклых четырёхугольника таковы, что стороны каждого лежат на серединных перпендикулярах к сторонам другого. Найдите их углы.
|
|
Сложность: 4- Классы: 8,9,10,11
|
Дан прямоугольник ABCD и точка P. Прямые, проходящие через A и B и перпендикулярные, соответственно, PC и PD, пересекаются в точке Q.
Докажите, что PQ ⊥ AB.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 196]