Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Протасов В.Ю.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Дан треугольник ABC. Две прямые, симметричные прямой AC относительно прямых AB и BC соответственно, пересекаются в точке K.
Докажите, что прямая BK проходит через центр O описанной около треугольника ABC окружности.

Вниз   Решение


Автор: Жуков Г.

По кругу записывают 2015 натуральных чисел так, чтобы каждые два соседних числа различались на их наибольший общий делитель.
Найдите наибольшее натуральное N, на которое гарантированно будет делиться произведение этих 2015 чисел.

ВверхВниз   Решение


Корабль в тумане пытается пристать к берегу. Экипаж не знает, в какой стороне находится берег, но видит маяк, находящийся на маленьком острове в $10$ км от берега, и понимает, что расстояние от корабля до маяка не превышает $10$ км (точное расстояние до маяка неизвестно). Маяк окружен рифами, поэтому приближаться к нему нельзя. Может ли корабль достичь берега, проплыв не больше $75$ км? (Береговая линия – прямая, траектория до начала движения вычерчивается на дисплее компьютера, после чего автопилот ведет корабль по ней.)

ВверхВниз   Решение


Автор: Жуков Г.

Дан вписанный четырёхугольник ABCD. Лучи AB и DC пересекаются в точке K. Оказалось, что точки B, D, а также середины M и N отрезков AC и KC лежат на одной окружности. Какие значения может принимать угол ADC?

ВверхВниз   Решение


Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?

Вверх   Решение

Все задачи автора

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



Задача 64400

Темы:   [ Задачи на движение ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 8,9,10

Три велосипедиста ездят по кольцевой дороге радиуса 1 км против часовой стрелки с постоянными различными скоростями.
Верно ли, что, если они будут кататься достаточно долго, то найдётся момент, когда расстояние между каждыми двумя из них будет больше 1 км?

Прислать комментарий     Решение

Задача 65939

Темы:   [ Вписанные и описанные окружности ]
[ Ортоцентр и ортотреугольник ]
[ Прямая Эйлера и окружность девяти точек ]
[ Центральная симметрия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Векторы помогают решить задачу ]
Сложность: 4+
Классы: 9,10,11

  На плоскости даны три прямые l1, l2, l3, образующие треугольник, и отмечена точка O – центр описанной окружности этого треугольника. Для произвольной точки X плоскости обозначим через Xi точку, симметричную точке X относительно прямой li,  i = 1, 2, 3.
  а) Докажите, что для произвольной точки M прямые, соединяющие середины отрезков O1O2 и M1M2, O2O3 и M2M3, O3O1 и M3M1, пересекаются в одной точке.
  б) Где может лежать эта точка пересечения?

Прислать комментарий     Решение

Задача 66259

Темы:   [ Вписанные и описанные окружности ]
[ Процессы и операции ]
[ Полуинварианты ]
[ ГМТ - прямая или отрезок ]
Сложность: 4+
Классы: 8,9

В точке X сидит преступник, а три полицейских, находящихся в точках A, B и C, блокируют его, то есть точка X лежит внутри треугольника ABC. Новый полицейский сменяет одного из них следующим образом: он занимает точку, равноудаленную от всех трёх полицейских, после чего один из троих уходит, и оставшаяся тройка по-прежнему блокирует преступника. Так происходит каждый вечер. Может ли случиться, что через какое-то время полицейские вновь займут точки A, B и C (известно, что точка X ни разу не попала на сторону треугольника)?

Прислать комментарий     Решение

Задача 103940

Темы:   [ Отношение, в котором биссектриса делит сторону ]
[ Симметрия помогает решить задачу ]
[ Вспомогательные равные треугольники ]
[ Две пары подобных треугольников ]
[ Проективные преобразования прямой ]
[ Окружность Аполлония ]
Сложность: 4+
Классы: 8,9,10

На плоскости дан угол и точка К внутри него. Доказать, что найдётся точка М, обладающая следующим свойством: если произвольная прямая, проходящая через К, пересекает стороны угла в точках А и В, то МК является биссектрисой угла АМВ.

Прислать комментарий     Решение

Задача 110753

Темы:   [ Ортоцентр и ортотреугольник ]
[ Три прямые, пересекающиеся в одной точке ]
[ Треугольник, образованный основаниями двух высот и вершиной ]
[ Симметрия помогает решить задачу ]
[ Вписанные и описанные окружности ]
Сложность: 4+
Классы: 8,9,10

Точки A', B', C' – основания высот остроугольного треугольника ABC. Окружность с центром B и радиусом BB' пересекает прямую A'C' в точках K и L (точки K и A лежат по одну сторону от BB'). Докажите, что точка пересечения прямых AK и CL лежит на прямой BO, где O – центр описанной окружности треугольника ABC.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 36]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .