ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Анджанс А.

Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?

Вниз   Решение


Докажите неравенство   ¼ a² + b² + c² ≥ ab – ac + 2bc  при любых a, b, c.

ВверхВниз   Решение


Можно ли в клетках таблицы 2002×2002 расставить натуральные числа от 1 до 2002² так, чтобы для каждой клетки этой таблицы из строки или из столбца, содержащих эту клетку, можно было бы выбрать тройку чисел, одно из которых равно произведению двух других?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



Задача 98200

Темы:   [ Десятичная система счисления ]
[ Индукция (прочее) ]
[ Последовательности (прочее) ]
[ Мощность множества. Взаимно-однозначные отображения ]
Сложность: 3+
Классы: 8,9,10

Автор: Анджанс А.

Десятичные записи натуральных чисел выписаны подряд, начиная с единицы, до некоторого n включительно:   12345678910111213...(n).
Существует ли такое n, что в этой записи все десять цифр встречаются одинаковое количество раз?
Прислать комментарий     Решение


Задача 53532

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
[ Четырехугольники (прочее) ]
Сложность: 4-
Классы: 8,9

Автор: Анджанс А.

В выпуклом четырёхугольнике прямая, проходящая через середины двух противоположных сторон, образует равные углы с диагоналями четырёхугольника. Докажите, что диагонали равны.

Прислать комментарий     Решение

Задача 97783

Темы:   [ Принцип крайнего (прочее) ]
[ Последовательности (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Анджанс А.

Прислать комментарий     Решение


Задача 97808

Темы:   [ Правильные многоугольники ]
[ Векторы помогают решить задачу ]
Сложность: 4-
Классы: 8,9

Автор: Анджанс А.

Внутри правильного n-угольника взята точка, проекции которой на все стороны попадают во внутренние точки сторон. Этими точками стороны разделяются на 2n отрезков. Занумеруем их подряд:  1, 2, 3, ..., 2n.  Доказать, что сумма длин отрезков с чётными номерами равна сумме длин отрезков с нечётными номерами.

Прислать комментарий     Решение

Задача 97993

Темы:   [ Перестановки и подстановки ]
[ Отношение порядка ]
[ Правило произведения ]
Сложность: 4-
Классы: 8,9,10

Автор: Анджанс А.

Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если где-то (не на первом месте) записано число i, то где-то слева от него встретится хотя бы одно из чисел  i + 1  и  i – 1.  Сколькими способами это можно сделать?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 39]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .