Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 67]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)
|
|
Сложность: 4- Классы: 10,11
|
Найдите все возрастающие арифметические прогрессии с конечным числом членов, сумма которых равна 1, а каждый член имеет вид 1/k, где k натуральное.
|
|
Сложность: 4- Классы: 7,8,9
|
Для каждого из девяти натуральных чисел $n, 2n, 3n, ..., 9n$ выписали на доску первую слева цифру в его десятичной записи. При этом $n$ выбрали так, чтобы среди девяти выписанных цифр количество различных цифр было как можно меньше. Чему равно это количество?
|
|
Сложность: 4- Классы: 8,9,10
|
a) Найдите число
k, которое делится на 2 и на 9 и имеет всего 14 делителей (включая 1 и
k).
б) Докажите, что если заменить 14 на 15, то задача будет иметь несколько решений, а при замене 14 на 17 решений вообще не будет.
|
|
Сложность: 4- Классы: 7,8,9
|
При каких n гири массами 1 г, 2 г, 3 г, ..., n г можно разложить на три равные по массе кучки?
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 67]