ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Толпыго А.К.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 8 9 10 11 12 13 14 [Всего задач: 67]      



Задача 97885

Темы:   [ Центральная симметрия помогает решить задачу ]
[ Шахматные доски и шахматные фигуры ]
[ Классическая комбинаторика (прочее) ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 5
Классы: 8,9,10,11

Игра в "супершахматы" ведётся на доске размером 30×30, и в ней участвуют 20 разных фигур, каждая из которых ходит по своим правилам. Известно, однако, что
  1) любая фигура с любого поля бьёт не более 20 полей и
  2) если фигуру сдвинуть на несколько полей, то битые поля соответственно сдвигаются (может быть, исчезают за пределы поля).
Докажите, что
  а) любая фигура F бьёт данное поле Х не более, чем с 20 полей;
  б) можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.

Прислать комментарий     Решение

Задача 73675

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Обратный ход ]
[ Полуинварианты ]
[ Метод спуска ]
Сложность: 5+
Классы: 8,9,10

С натуральным числом (записываемым в десятичной системе) разрешено проделывать следующие операции:

А) приписать на конце цифру 4;

Б) приписать на конце цифру 0;

В) разделить на 2 (если число чётно).

Например, если с числом 4 проделаем последовательно операции В, В, А и Б, то получим число 140.

а) Из числа 4 получите число 1972.

б)* Докажите, что из числа 4 можно получить любое натуральное число.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 [Всего задач: 67]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .