Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Казицына Т.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Из 100 членов Совета Двух Племён часть — эльфы, остальные — гномы. Каждый написал два числа: количество эльфов в Совете и количество гномов в Совете. При этом своих соплеменников каждый посчитал верно, а при подсчёте иноплеменников ошибся ровно на 2. В написанных числах одна цифра встретилась не менее 222 раз. Сколько эльфов и сколько гномов могло быть в Совете? Если вариантов несколько — укажите один из них.

Вниз   Решение


В треугольнике $ABC$ проведены биссектрисы $AA_1$, $BB_1$ и $CC_1$. Отрезки $BB_1$ и $A_1C_1$ пересекаются в точке $D$. Точка $E$ – проекция точки $D$ на сторону $AC$. Точки $P$ и $Q$ лежат на сторонах $AB$ и $BC$ соответственно так, что $EP=PD$, $EQ=QD$. Докажите, что $\angle PDB_1=\angle EDQ$.

ВверхВниз   Решение


Пусть точка $M$ – середина катета $AB$ прямоугольного треугольника $ABC$ с прямым углом $A$. На медиане $AN$ треугольника $AMC$ отмечена точка $D$, так что углы $ACD$ и $BCM$ равны. Докажите, что угол $DBC$ также равен этим углам.

ВверхВниз   Решение


Пусть p и q — отличные от нуля действительные числа и p2 - 4q > 0. Докажите, что следующие последовательности сходятся:
а) y0 = 0,        yn + 1 = $ {\dfrac{q}{p-y_n}}$    (n $ \geqslant$ 0);
б) z0 = 0,        zn + 1 = p - $ {\dfrac{q}{z_n}}$    (n $ \geqslant$ 0).
Установите связь между предельными значениями этих последовательностей y*, z* и корнями уравнения x2 - px + q = 0.

ВверхВниз   Решение


Дан лист клетчатой бумаги. Докажите, что при  n ≠ 4  не существует правильного n-угольника с вершинами в узлах решетки.

ВверхВниз   Решение


С какой гарантированной точностью вычисляется $ \sqrt{k}$ при помощи алгоритма задачи 9.48 после пяти шагов?

ВверхВниз   Решение


12 монет. Из двенадцати монет одиннадцать настоящих, а одна фальшивая (она отличается по весу от настоящей, но не известно, в какую сторону). Требуется за три взвешивания на двухчашечных весах без гирь найти фальшивую монету и выяснить, легче она или тяжелее настоящей.

ВверхВниз   Решение


Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



Задача 67135

Тема:   [ Текстовые задачи (прочее) ]
Сложность: 3
Классы: 5,6,7,8

Из 100 членов Совета Двух Племён часть — эльфы, остальные — гномы. Каждый написал два числа: количество эльфов в Совете и количество гномов в Совете. При этом своих соплеменников каждый посчитал верно, а при подсчёте иноплеменников ошибся ровно на 2. В написанных числах одна цифра встретилась не менее 222 раз. Сколько эльфов и сколько гномов могло быть в Совете? Если вариантов несколько — укажите один из них.
Прислать комментарий     Решение


Задача 67272

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 6,7,8

Фигуру снизу можно разделить на трёх «дикобразов» (возможно, повёрнутых или перевёрнутых), изображённых на рисунке сверху. Отметьте дольки, в которых окажутся глаза этих дикобразов.

Прислать комментарий     Решение

Задача 67330

Темы:   [ Задачи на смеси и концентрации ]
[ Дроби (прочее) ]
Сложность: 3
Классы: 8,9,10,11

По мнению Тани, в идеальном кофейном напитке должно быть ровно в 9 раз больше кофе, чем молока. У Глеба есть стакан и кружка, а также целая цистерна молока и огромная турка с неограниченным запасом кофе. Аккуратный Глеб может отпить ровно половину содержимого кружки или стакана. Как Глебу приготовить для Тани целый стакан идеального кофейного напитка, если точный объём кружки неизвестен, но он как минимум на $10\%$ больше объёма стакана? Глеб может наливать кофе и молоко в стакан или в кружку, может выливать содержимое, переливать из кружки в стакан или наоборот, отпивать половину содержимого любое конечное количество раз.
Прислать комментарий     Решение


Задача 67362

Темы:   [ Правильный (равносторонний) треугольник ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3
Классы: 8,9,10,11

Вершины $M$, $N$, $K$ прямоугольника $KLMN$ лежат на сторонах $AB$, $BC$, $CA$ соответственно правильного треугольника $ABC$ так, что $AM=2$, $KC=1$, а вершина $L$ лежит вне треугольника. Найдите угол $KMN$.
Прислать комментарий     Решение


Задача 67396

Тема:   [ Геометрия на клетчатой бумаге ]
Сложность: 3
Классы: 7,8,9,10

У восьми фермеров есть клетчатое поле $8\times 8$, огороженное по периметру забором и сплошь заросшее ягодами (в каждой точке поля, кроме точек забора, растёт ягода). Фермеры поделили поле между собой по линиям сетки на $8$ участков равной площади (каждый участок – многоугольник), но границы отмечать не стали. Каждый фермер следит только за ягодами внутри (не на границе) своего участка, а пропажу замечает, только если у него пропали хотя бы две ягоды. Всё это известно вороне, но где проходят границы между участками, она не знает. Может ли ворона утащить с поля $9$ ягод так, чтобы пропажу гарантированно ни один фермер не заметил?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .