ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Двое играют в такую игру. Дана шоколадка с продольными и поперечными углублениями, по которым её можно ломать. Первый разламывает шоколадку по одной из линий, второй разламывает одну из частей, первый разламывает одну из трёх образовавшихся частей и т. д. Игра заканчивается в тот момент, когда в результате очередного хода возникнет долька, на которой уже нет углублений; сделавший этот ход выигрывает. На шоколадке 60 долек: имеется 5 продольных и 9 поперечных углублений. Кто выигрывает при правильной игре: начинающий или его партнёр? |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
Двое бросают монету: один бросил ее 10 раз, другой – 11 раз.
Два шахматиста играют между собой в шахматы с часами (сделав ход, шахматист останавливает свои часы и пускает часы другого). Известно, что после того, как оба сделали по 40 ходов, часы обоих шахматистов показывали одно и то же время: 2 часа 30 мин. а) Докажите, что в ходе партии был момент, когда часы одного обгоняли часы другого не менее, чем на 1 мин. 51 сек.
Двое играют в такую игру. Дана шоколадка с продольными и поперечными углублениями, по которым её можно ломать. Первый разламывает шоколадку по одной из линий, второй разламывает одну из частей, первый разламывает одну из трёх образовавшихся частей и т. д. Игра заканчивается в тот момент, когда в результате очередного хода возникнет долька, на которой уже нет углублений; сделавший этот ход выигрывает. На шоколадке 60 долек: имеется 5 продольных и 9 поперечных углублений. Кто выигрывает при правильной игре: начинающий или его партнёр?
Квадрат 9×9 разбит на 81 единичную клетку. Некоторые клетки закрашены,
причём расстояние между центрами каждых двух закрашенных клеток больше 2.
На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке