Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бегунц А.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Остроугольный треугольник ABC вписан в окружность Ω. Касательные, проведённые к Ω в точках B и C, пересекаются в точке P. Точки D и E – основания перпендикуляров, опущенных из точки P на прямые AB и AC. Докажите, что точка пересечения высот треугольника ADE является серединой отрезка BC.

Вниз   Решение


На плоскости даны неравнобедренный треугольник, его описанная окружность, и отмечен центр его вписанной окружности.
Пользуясь только линейкой без делений и проведя не больше семи линий, постройте диаметр описанной окружности.

ВверхВниз   Решение


Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

ВверхВниз   Решение


Имеется 11 пустых коробок. За один ход можно положить по одной монете в какие-то 10 из них. Играют двое, ходят по очереди. Побеждает тот, после хода которого впервые в одной из коробок окажется 21 монета. Кто выигрывает при правильной игре?

ВверхВниз   Решение


Пусть  f(x) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение  f(x) = a  при любом значении a имеет чётное число решений?

ВверхВниз   Решение


В треугольнике ABC  AB = BC. Из точки E на стороне AB опущен перпендикуляр ED на BC. Оказалось, что  AE = ED.  Найдите угол DAC.

ВверхВниз   Решение


Автор: Лифшиц Ю.

Клетки квадрата 9×9 окрашены в красный и белый цвета. Докажите, что найдётся или клетка, у которой ровно два красных соседа по углу, или клетка, у которой ровно два белых соседа по углу (или и то, и другое).

ВверхВниз   Решение


Какое наибольшее количество множителей вида     можно вычеркнуть в левой части уравнения     так, чтобы число его натуральных корней не изменилось?

Вверх   Решение

Все задачи автора

Страница: 1 2 >> [Всего задач: 9]      



Задача 66575

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Тригонометрия (прочее) ]
Сложность: 3
Классы: 9,10,11

Решите уравнение $$\tan\pi {}x = [\lg \pi^x]-[\lg [\pi^x]],$$ где $[a]$ обозначает наибольшее целое число, не превосходящее $a$.
Прислать комментарий     Решение


Задача 65207

Темы:   [ Показательные функции и логарифмы (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Сумма нескольких не обязательно различных положительных чисел не превосходила 100. Каждое из них заменили на новое следующим образом: сначала прологарифмировали по основанию 10, затем округлили стандартным образом до ближайшего целого числа и, наконец, возвели 10 в найденную целую степень. Могло ли оказаться так, что сумма новых чисел превышает 300?

Прислать комментарий     Решение

Задача 65208

Темы:   [ Тригонометрические уравнения ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 10,11

Какое наибольшее количество множителей вида     можно вычеркнуть в левой части уравнения     так, чтобы число его натуральных корней не изменилось?

Прислать комментарий     Решение

Задача 66089

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Найдите наименьшее натуральное число, кратное 80, в котором можно так переставить две его различные цифры, что получившееся число также будет кратно 80.

Прислать комментарий     Решение

Задача 66095

Темы:   [ Логарифмические уравнения ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 10,11

Незнайка знаком только с десятичными логарифмами и считает, что логарифм суммы двух чисел равен произведению их логарифмов, а логарифм разности двух чисел равен частному их логарифмов. Может ли Незнайка подобрать хотя бы одну пару чисел, для которой действительно верны одновременно оба этих равенства?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .