ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть P(x) – многочлен степени n ≥ 2 с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника. На лотерейном билете требуется отметить 8 клеточек из 64. Какова вероятность того, что после розыгрыша, в котором также будет выбрано 8 каких-то клеток из 64 (все такие возможности равновероятны), окажется, что угаданы Основанием прямой призмы служит ромб с острым углом α . Найдите объём призмы, если её большая диагональ равна l и образует с плоскостью основания угол β . Олег нарисовал пустую таблицу 50×50 и написал сверху от каждого столбца и слева от каждой строки по числу. Оказалось, что все 100 написанных чисел различны, причём 50 из них рациональные, а остальные 50 – иррациональные. Затем в каждую клетку таблицы он записал сумму чисел, написанных около её строки и её столбца ("таблица сложения"). Какое наибольшее количество сумм в этой таблице могли оказаться рациональными числами? Игра с тремя кучками камней. Имеется три кучки камней: в первой — 10, во второй — 15, в третьей — 20. За ход разрешается разбить любую кучку на две меньшие части; проигрывает тот, кто не сможет сделать хода. Существует ли треугольник, для сторон x, y, z которого выполнено соотношение x³ + y³ + z³ = (x + y)(y + z)(z + x)? На доске написано выражение |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 105]
На доске написано уравнение x³ + *x² + *x + * = 0. Петя и Вася по очереди заменяют звёздочки на рациональные числа: вначале Петя заменяет любую из звёздочек, потом Вася – любую из двух оставшихся, а затем Петя – оставшуюся звёздочку. Верно ли, что при любых действиях Васи Петя сможет получить уравнение, у которого разность каких-то двух корней равна 2014?
На доске написано выражение
Числа x, y и z таковы, что все три числа x + yz, y + zx и z + xy рациональны, а x² + y² = 1. Докажите, что число xyz² также рационально.
К натуральному числу N прибавили наибольший его делитель, меньший N, и получили степень десятки. Найдите все такие N.
Из цифр 1, 2, 3, 4, 5, 6, 7, 8, 9 составлены девять (не обязательно различных) девятизначных чисел; каждая из цифр использована в каждом числе ровно один раз. На какое наибольшее количество нулей может оканчиваться сумма этих девяти чисел?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 105]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке