ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Агаханов Н.Х.

Назар Хангельдыевич Агаханов (р. 1954) - доцент кафедры высшей математики МФТИ, кандидат физико-математических наук. C 1974 года член жюри Всесоюзной (в 1992 году - Межреспубликанской, c 1993 года - Всероссийской олимпиады школьников по математике). Лидер национальной команды России на международной математической олимпиаде. Председатель Консультативного совета международной математической олимпиады.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 105]      



Задача 109774

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические уравнения ]
[ Производные высших порядков ]
[ Методы математического анализа (прочее) ]
Сложность: 4+
Классы: 10,11

Пусть α , β , γ , τ – такие положительные числа, что при всех x

sinα x+ sinβ x= sinγ x+ sinτ x.

Докажите, что α=γ или α=τ .
Прислать комментарий     Решение

Задача 109819

Темы:   [ Характеристические свойства и рекуррентные соотношения ]
[ Монотонность, ограниченность ]
Сложность: 4+
Классы: 9,10,11

Существует ли ограниченная функция f : такая, что f(1)>0 и f(x) удовлетворяет при всех x,y неравенству

f2(x+y) f2(x)+2f(xy)+f2(y)?

Прислать комментарий     Решение

Задача 109573

Темы:   [ Тригонометрические неравенства ]
[ Выпуклость и вогнутость (прочее) ]
Сложность: 4+
Классы: 10,11

Докажите, что при всех x , 0<x<π /3 , справедливо неравенство

sin 2x+ cos x>1.

Прислать комментарий     Решение

Задача 109911

Темы:   [ Неравенства с трехгранными углами ]
[ Четырехугольная пирамида ]
[ Тетраэдр (прочее) ]
[ Сумма внутренних и внешних углов многоугольника ]
[ Выпуклые многоугольники ]
Сложность: 4+
Классы: 10,11

Существуют ли выпуклая n -угольная ( n 4 ) и треугольная пирамиды такие, что четыре трехгранных угла n -угольной пирамиды равны трехгранным углам треугольной пирамиды?
Прислать комментарий     Решение


Задача 111826

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Тригонометрические неравенства ]
Сложность: 4+
Классы: 9,10,11

Докажите, что при k>10 в произведении

f(x) = cos x cos 2x cos 3x .. cos 2k x

можно заменить один cos на sin так, что получится функция f1(x) , удовлетворяющая при всех действительных x неравенству |f1(x)| .
Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 105]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .