ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Найдите наименьшее четырёхзначное число СЕЕМ, для которого существует решение ребуса МЫ + РОЖЬ = СЕЕМ. (Одинаковым буквам соответствуют одинаковые цифры, разным — разные.)
Прямоугольный лист бумаги согнули, совместив вершину с серединой противоположной короткой стороны (см. рис.). Оказалось, что треугольники I и II равны. Найдите длинную сторону прямоугольника, если короткая равна 8.
Решите ребус: БАО×БА×Б = 2002. Килограмм говядины с костями стоит 78 рублей, килограмм говядины без костей — 90 рублей, а килограмм костей — 15 рублей. Сколько граммов костей в килограмме говядины?
КУБ является кубом. Докажите, что ШАР кубом не является. (КУБ и ШАР трёхзначные числа, разные буквы обозначают различные цифры.) На рисунке приведены три примера показаний исправных электронных часов. Сколько палочек могут перестать работать, чтобы время всегда можно было определить однозначно? Обозначим через S(n, k) количество не делящихся на k коэффициентов разложения многочлена (x + 1)n по степеням x. Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить: |
Страница: 1 [Всего задач: 5]
Найдите наименьшее натуральное n, для которого число nn не является делителем числа 2008!.
В треугольнике ABC высоты или их продолжения пересекаются в точке H, а R – радиус его описанной окружности.
а) В ведро налили 12 литров молока. Пользуясь лишь сосудами в 5 и 7 л, разделите молоко на две равные части.
Обозначим через S(n, k) количество не делящихся на k коэффициентов разложения многочлена (x + 1)n по степеням x.
Команда из n школьников участвует в игре: на каждого из них надевают шапку одного из k заранее известных цветов, а затем по свистку все школьники одновременно выбирают себе по одному шарфу. Команда получает столько очков, у скольких её участников цвет шапки совпал с цветом шарфа (шарфов и шапок любого цвета имеется достаточное количество; во время игры каждый участник не видит своей шапки, зато видит шапки всех остальных, но не имеет права выдавать до свистка никакую информацию). Какое наибольшее число очков команда, заранее наметив план действий каждого её члена, может гарантированно получить:
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке