ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи У золотоискателя есть куча золотого песка массой 37 кг (и больше песка у него нет), двуxчашечные весы и две гири 1 и 2 кг. Золотоискатель умеет делать действия двух типов:
Как ему за два действия с весами получить кучку, в которой ровно 26 кг песка? Смешать две кучки песка, а также просто ставить что-то на весы действием не считается. Два игрока по очереди выписывают на доске в ряд слева направо произвольные цифры. Проигрывает игрок, после хода которого одна или несколько цифр, записанных подряд, образуют число, кратное 11. Кто из игроков победит при правильной игре? Пусть $f(x)=x^2+3x+2$. Вычислите $$\Bigl(1-\frac{2}{f(1)}\Bigr)\Bigl(1-\frac2{f(2)}\Bigr)\Bigl(1-\frac2{f(3)}\Bigr)\ldots\Bigl(1-\frac2{f(2019)}\Bigr).$$ Найдите все действительные значения a и b, при которых уравнения x³ + ax² + 18 = 0, x³ + bx + 12 = 0 имеют два общих корня, и определите эти корни. Даны 10 натуральных чисел, не превышающих 91. Докажите, что отношение некоторых двух из этих чисел принадлежит отрезку [2/3, 3/2]. На трёх красных и трёх синих карточках написаны шесть положительных чисел, все они различны. Известно, что на карточках какого-то одного цвета написаны попарные суммы каких-то трёх чисел, а на карточках другого цвета – попарные произведения тех же трёх чисел. Всегда ли можно гарантированно определить эти три числа? Докажите, что выпуклый многоугольник нельзя
разрезать на конечное число невыпуклых четырехугольников.
В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB. Четырехугольник $ABCD$ вписан в окружность. По дуге $AD$, не содержащей точек $B$ и $C$, движется точка $P$. Фиксированная прямая $l$, перпендикулярная прямой $BC$, пересекает лучи $BP$, $CP$ в точках $B_0$, $C_0$ соответственно. Докажите, что касательная, проведенная к описанной окружности треугольника $PB_0C_0$ в точке $P$, проходит через фиксированную точку. Число $2021 = 43\cdot47$ составное. Докажите, что если вписать в числе $2021$ сколько угодно восьмёрок между $20$ и $21$, тоже получится составное число. Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 145]
Биссектриса и высота, проведённые из одной вершины некоторого треугольника, делят его противоположную сторону на три отрезка.
Окружность, проходящая через вершину $B$ прямого угла и середину гипотенузы прямоугольного треугольника $ABC$, пересекает катеты этого треугольника в точках $M$ и $N$. Оказалось, что $AC = 2MN$. Докажите, что $M$ и $N$ — середины катетов треугольника $ABC$.
У золотоискателя есть куча золотого песка массой 37 кг (и больше песка у него нет), двуxчашечные весы и две гири 1 и 2 кг. Золотоискатель умеет делать действия двух типов:
Как ему за два действия с весами получить кучку, в которой ровно 26 кг песка? Смешать две кучки песка, а также просто ставить что-то на весы действием не считается.
Карта Квадрландии представляет собой квадрат 6×6 клеток. Каждая клетка – либо королевство, либо спорная территория. Королевств всего 27, а спорных территорий 9. На спорную территорию претендуют все королевства по соседству и только они (то есть клетки, соседние со спорной по стороне или вершине). Может ли быть, что на каждые две спорные территории претендует разное число королевств?
Существует ли число, кратное 2020, в котором всех цифр 0, 1, 2, ..., 9 поровну?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 145]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке