ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Евдокимов М.А.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 156]      



Задача 67482

Темы:   [ Вспомогательные подобные треугольники ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3+
Классы: 8,9,10,11

В равностороннем треугольнике $ABC$ проведены отрезки $ED$ и $GF$, так что образовались два равносторонних треугольника $ADE$ и $GFC$ со сторонами 1 и 100 (точки $E$ и $G$ лежат на стороне $AC$). Отрезки $EF$ и $DG$ пересекаются в точке $O$, причём угол $EOG$ равен $120^\circ$. Чему равна сторона треугольника $ABC$?

Прислать комментарий     Решение

Задача 65629

Темы:   [ Задачи с неравенствами. Разбор случаев ]
[ Делимость чисел. Общие свойства ]
Сложность: 4-
Классы: 5,6,7

Вася живет в многоквартирном доме. В каждом подъезде дома одинаковое количество этажей, на каждом этаже по четыре квартиры, каждая квартира имеет одно-, дву- или трёхзначный номер. Вася заметил, что количество квартир с двузначным номером у него в подъезде в десять раз больше количества подъездов в доме. Сколько всего квартир может быть в этом доме?

Прислать комментарий     Решение

Задача 65673

Темы:   [ Исследование квадратного трехчлена ]
[ Квадратные уравнения. Теорема Виета ]
[ Целочисленные и целозначные многочлены ]
Сложность: 4-
Классы: 8,9,10

Васе задали на дом уравнение  x² + p1x + q1 = 0,  где p1 и q1 – целые числа. Он нашел его корни p2 и q2 и написал новое уравнение  x² + p2x + q2 = 0.  Повторив операцию еще трижды, Вася заметил, что он решал четыре квадратных уравнения и каждое имело два различных целых корня (если из двух возможных уравнений два различных корня имело ровно одно, то Вася всегда выбирал его, а если оба – любое). Однако, как ни старался Вася, у него не получилось составить пятое уравнение так, чтобы оно имело два различных вещественных корня, и Вася сильно расстроился. Какое уравнение Васе задали на дом?

Прислать комментарий     Решение

Задача 65679

Темы:   [ Теорема Виета ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Уравнение с целыми коэффициентами  x4 + ax³ + bx² + cx + d = 0  имеет четыре положительных корня с учетом кратности.
Найдите наименьшее возможное значение коэффициента b при этих условиях.

Прислать комментарий     Решение

Задача 65719

Темы:   [ Взаимное расположение высот, медиан, биссектрис и проч. ]
[ Примеры и контрпримеры. Конструкции ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 4-
Классы: 8,9,10

На листе бумаги синим карандашом нарисовали треугольник, а затем провели в нём красным карандашом медиану, биссектрису и высоту (возможно, не все из разных вершин), лежащие внутри треугольника. Получили разбиение треугольника на части. Мог ли среди этих частей оказаться равносторонний треугольник с красными сторонами?

Прислать комментарий     Решение

Страница: << 15 16 17 18 19 20 21 >> [Всего задач: 156]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .