Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 154]
|
|
|
Сложность: 3+ Классы: 8,9,10
|
Король вызвал двух мудрецов и объявил им задание:
первый задумывает 7 различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу
называет лишь четвертое по величине из этих чисел, после
чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Найдите наименьшее натуральное число N>9, которое не делится на 7, но если вместо любой его цифры поставить семерку, то получится число, которое делится на 7.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
16 карточек с целыми числами от 1 до 16 разложены лицевой стороной вниз в виде таблицы 4\times4 так, что карточки, на которых записаны соседние числа, лежат рядом (соприкасаются по стороне). Какое наименьшее число карточек нужно одновременно перевернуть, чтобы наверняка определить местоположение всех чисел (как бы ни были разложены карточки)?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
В декартовой системе координат (с одинаковым масштабом по осям x и y) нарисовали график показательной функции y=3^x. Затем ось y и все отметки на оси x стёрли. Остались лишь график функции и ось x без масштаба и отметки 0. Каким образом с помощью циркуля и линейки можно восстановить ось y?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В треугольнике ABC с прямым углом C провели высоту CH. Окружность, проходящая через точки C и H, повторно пересекает отрезки AC, CB и BH в точках Q, P и R соответственно. Отрезки HP и CR пересекаются в точке T. Что больше: площадь треугольника CPT или сумма площадей треугольников CQH и HTR?

Страница: << 13 14 15 16 17 18 19 >> [Всего задач: 154]