Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 156]
|
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
На столе лежит колода из 36 карт, верхняя из которых червонный туз. За одно «перемешивание» фокусник снимает верхнюю половину колоды и кладёт рядом с нижней, а затем делает так, чтобы карты двух стопок чередовались: сначала нижняя карта левой или правой стопки, потом первая снизу другой стопки, потом вторая снизу карта первой стопки, вторая снизу карта другой стопки, и так далее (см. рисунок).

Какое наименьшее число перемешиваний нужно сделать фокуснику, чтобы червонный туз оказался нижней картой колоды?
При каждом перемешивании то, из какой половины карта окажется снизу, фокусник выбирает сам.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Из прямого угла прямоугольного треугольника опущена высота, и в образовавшиеся треугольники вписаны два квадрата (как на рисунке).

Чему может быть равна сумма площадей этих квадратов, если длина биссектрисы прямого угла треугольника равна $1$?
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
На стороне $CD$ прямоугольника $ABCD$ взята точка $K$. Из вершины $B$ опустили перпендикуляр $BH$ на отрезок $AK$.
Оказалось, что отрезки $AK$ и $BH$ делят прямоугольник на три части, в каждую из которых можно вписать круг (см. рисунок).
Докажите, что если круги, касающиеся стороны $CD$, равны, то и третий круг им равен.

|
|
|
Сложность: 3+ Классы: 6,7,8
|
Миша сложил из кубиков куб 3×3×3. Затем некоторые соседние по грани кубики он склеил друг с другом. Получилась цельная конструкция из 16 кубиков, остальные кубики Миша убрал. Обмакнув конструкцию в чернила, он поочерёдно приложил её к бумаге тремя гранями. Вышло слово КОТ (см. рис.). Что получится, если отпечатать грань, противоположную букве "О"?

|
|
|
Сложность: 3+ Классы: 5,6,7,8
|
Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска?

Страница:
<< 14 15 16 17
18 19 20 >> [Всего задач: 156]