ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() Лев Александрович Емельянов - старший преподаватель Калужского государственного педагогического университета им. К.Э. Циолковского (КГПУ), член жюри Всероссийской олимпиады школьников по математике. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Пусть A', B' и C' – точки касания вневписанных окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1 подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]
Пусть A' – точка касания вневписанной окружности треугольника ABC со стороной BC. Прямая a проходит через точку A' и параллельна биссектрисе внутреннего угла A. Аналогично строятся прямые b и c. Докажите, что прямые a, b и c пересекаются в одной точке.
Пусть A', B' и C' – точки касания вневписанных окружностей с соответствующими сторонами треугольника ABC. Описанные окружности треугольников A'B'C, AB'C' и A'BC' пересекают второй раз описанную окружность треугольника ABC в точках C1, A1 и B1 соответственно. Докажите, что треугольник A1B1C1 подобен треугольнику, образованному точками касания вписанной окружности треугольника с его сторонами.
Четырёхугольник ABCD является одновременно и вписанным, и описанным, причём вписанная в ABCD окружность касается его сторон AB, BC, CD и AD в точках K, L, M, N соответственно. Биссектрисы внешних углов A и B четырёхугольника пересекаются в точке K', внешних углов B и C – в точке L', внешних углов C и D – в точке M', внешних углов D и A – в точке N'. Докажите, что прямые KK', LL', MM' и NN' проходят через одну точку.
Докажите, что сумма двух нагелиан больше полупериметра треугольника.
Сфера с центром в плоскости основания ABC тетраэдра SABC проходит через вершины A , B и C и вторично пересекает ребра SA , SB и SC в точках A1 , B1 и C1 соответственно. Плоскости, касающиеся сферы в точках A1 , B1 и C1 , пересекаются в точке O . Докажите, что O – центр сферы, описанной около тетраэдра SA1B1C1 .
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 90]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке