Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 87]
|
|
Сложность: 4- Классы: 7,8,9
|
Прямоугольник m×n разрезан на уголки:
Докажите, что разность между количеством уголков вида
a и количеством уголков вида
b делится на 3.
|
|
Сложность: 4- Классы: 7,8,9
|
На доске записано целое число. Его последняя цифра запоминается, затем стирается и, умноженная на 5, прибавляется к тому числу, что осталось на доске после стирания. Первоначально было записано число 71998. Может ли после применения нескольких таких операций получиться число 19987?
|
|
Сложность: 4- Классы: 7,8,9
|
Какое наименьшее число сторон может иметь нечётноугольник (не обязательно выпуклый), который можно разрезать на параллелограммы?
Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.
|
|
Сложность: 4- Классы: 7,8,9
|
Каждая деталь конструктора "Юный паяльщик" – это скобка в виде буквы П, состоящая из трёх единичных отрезков. Можно ли из деталей этого конструктора спаять полный проволочный каркас куба 2×2×2, разбитого на кубики 1×1×1? (Каркас состоит из 27 точек, соединённых единичными отрезками; любые две соседние точки должны быть соединены ровно одним проволочным отрезком.)
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 87]