Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 90]
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Стороны треугольника разделены основаниями биссектрис на два отрезка каждая. Обязательно ли из шести образовавшихся отрезков можно составить два треугольника?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
В остроугольном треугольнике $ABC$ $CM$ – медиана, $P$ – проекция ортоцентра $H$ на биссектрису угла $C$. Докажите, что $MP$ делит отрезок $CH$ пополам.
В равнобедренном треугольнике ABC (AB = BC) средняя линия, параллельная стороне BC, пересекается со вписанной окружностью в точке F, не лежащей на основании AC. Докажите, что касательная к окружности в точке F пересекается с биссектрисой угла C на стороне AB.
В треугольнике
ABC медианы
AA' ,
BB' и
CC' продлили до
пересечения с описанной окружностью в точках
A0
,
B0
и
C0
соответственно. Известно, что точка
M пересечения
медиан треугольника
ABC делит отрезок
AA0
пополам.
Докажите, что треугольник
A0
B0
C0
– равнобедренный.
|
|
|
Сложность: 4 Классы: 7,8,9
|
Дан параллелограмм ABCD (AB < BC). Докажите, что описанные окружности треугольников APQ для всевозможных точек P и Q, выбранных на сторонах BC и CD соответственно так, что CP = CQ, имеют общую точку, отличную от A.
Страница:
<< 8 9 10 11
12 13 14 >> [Всего задач: 90]