ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Косухин О.Н.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 116705

Темы:   [ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Формула включения-исключения ]
[ Композиции симметрий ]
[ Доказательство от противного ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 11

После обеда на прозрачной квадратной скатерти остались тёмные пятна общей площади S. Оказалось, что если сложить скатерть пополам вдоль любой из двух линий, соединяющих середины противоположных её сторон, или же вдоль одной из двух её диагоналей, то общая видимая площадь пятен будет равна S1. Если же сложить скатерть пополам вдоль другой её диагонали, то общая видимая площадь пятен останется равна S. Какое наименьшее значение может принимать величина  S1 : S?

Прислать комментарий     Решение

Задача 64731

Темы:   [ Теория алгоритмов (прочее) ]
[ Сочетания и размещения ]
Сложность: 4+
Классы: 10,11

У повара в подчинении десять поварят, некоторые из которых дружат между собой. Каждый рабочий день повар назначает одного или нескольких поварят на дежурство, а каждый из дежурных поварят уносит с работы по одному пирожному каждому своему недежурящему другу. В конце дня повар узнает количество пропавших пирожных. Сможет ли он за 45 рабочих дней понять, кто из поварят дружит между собой, а кто нет?

Прислать комментарий     Решение

Задача 65205

Темы:   [ Числовые таблицы и их свойства ]
[ Доказательство от противного ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

Докажите, что в таблице 8×8 нельзя расставить натуральные числа от 1 до 64 (каждое по одному разу) так, чтобы в ней для любого квадрата 2×2 вида    было выполнено равенство  |ad – bc| = 1.

Прислать комментарий     Решение

Задача 65692

Темы:   [ Многочлены (прочее) ]
[ Индукция (прочее) ]
[ Доказательство от противного ]
Сложность: 4+
Классы: 10,11

Про приведённый многочлен  P(x) = xn + an–1xn–1 + ... + a1x + a0  с действительными коэффициентами известно, что при некотором натуральном
m ≥ 2  многочлен    имеет действительные корни, причём только положительные. Обязательно ли сам многочлен P(x) имеет действительные корни, причём только положительные?

Прислать комментарий     Решение

Задача 116574

Темы:   [ Свойства разверток ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4+
Классы: 10,11

Известно, что всякую треугольную пирамиду, противоположные рёбра которой попарно равны, можно так разрезать вдоль трёх её рёбер и развернуть, чтобы её развёрткой стал треугольник без внутренних разрезов (см. рис.).

Найдётся ли еще какой-нибудь выпуклый многогранник, который можно так разрезать вдоль нескольких его рёбер и развернуть, чтобы его развёрткой стал треугольник без внутренних разрезов?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .