ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Один треугольник лежит внутри другого. Петя и Вася играют в следующую игру. Петя загадывает натуральное число x с суммой цифр 2012. За один ход Вася выбирает любое натуральное число a и узнаёт у Пети сумму цифр числа |x – a|. Какое минимальное число ходов необходимо сделать Васе, чтобы гарантированно определить x? 2011 складов соединены дорогами так, что от каждого склада можно проехать к любому другому, возможно, проехав по нескольким дорогам. На складах находится по x1, ..., x2011 кг цемента соответственно. За один рейс можно провезти с произвольного склада на другой по соединяющей их дороге произвольное количество цемента. В итоге на складах по плану должно оказаться по y1, ..., y2011 кг цемента соответственно, причём Петя тратит ⅓ своего времени на игру в футбол, ⅕ – на учебу в школе, ⅙ – на просмотр кинофильмов, 1/70 – на решение олимпиадных задач и ⅓ – на сон. Можно ли так жить? 31-го декабря Антон сказал, что после Нового Года всё, сказанное им до Нового Года станет ложью. Правду ли он сказал? В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что ∠PKA = ∠QKD. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
Через терминал оплаты на мобильный телефон можно перевести деньги, при этом взимается комиссия – натуральное число процентов. Федя положил целое количество рублей на мобильный телефон, и его счет пополнился на 847 рублей. Сколько денег положил на счет Федя, если известно, что комиссия менее 30%?
Пусть AHa и BHb – высоты треугольника ABC, P и Q – проекции точки Ha на стороны AB и AC. Докажите, что прямая PQ делит отрезок HaHb пополам.
Один треугольник лежит внутри другого.
В трапеции ABCD с основаниями AD и BC лучи AB и DC пересекаются в точке K. Точки P и Q – центры описанных окружностей треугольников ABD и BCD. Докажите, что ∠PKA = ∠QKD.
Два четырехугольника ABCD и A1B1C1D1 симметричны друг другу относительно точки P. Известно, что четырехугольники A1BCD, AB1CD и ABC1D вписанные. Докажите, что ABCD1 тоже вписанный.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке