Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Голенищева-Кутузова Т.И.

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Пусть a, b, c – положительные числа, сумма которых равна 1. Докажите неравенство:  

Вниз   Решение


Автор: Фольклор

Известно, что числа а, b, c и d – целые и  .  Может ли выполняться равенство  аbcd = 2012?

ВверхВниз   Решение


Пусть AHa и BHb – высоты, а ALa и BLb – биссектрисы треугольника ABC. Известно, что  HaHb || LaLb.  Верно ли, что  AC = BC?

ВверхВниз   Решение


На продолжении наибольшей стороны AC треугольника ABC отложен отрезок |CD|=|BC| . Доказать, что ABD тупой.

ВверхВниз   Решение


В треугольнике ABC  AA1 и BB1 – высоты. На стороне AB выбраны точки M и K так, что  B1K || BC  и  MA1 || AC.  Докажите, что  ∠AA1K = ∠BB1M.

ВверхВниз   Решение


Доказать неравенство  abc² + bca² + cab² ≤ a4 + b4 + c4.

ВверхВниз   Решение


Натуральные числа a, b, c, d попарно взаимно просты и удовлетворяют равенству  ab + cd = ac – 10bd.
Докажите, что среди них найдутся три числа, одно из которых равно сумме двух других.

ВверхВниз   Решение


Разрежьте первый параллелограмм на три части и сложите из них второй.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 [Всего задач: 24]      



Задача 67287

Темы:   [ Равносоставленные фигуры ]
[ Разрезания (прочее) ]
Сложность: 4-
Классы: 6,7,8,9

Разрежьте первый параллелограмм на три части и сложите из них второй.

Прислать комментарий     Решение

Задача 116217

Тема:   [ Примеры и контрпримеры. Конструкции ]
Сложность: 4-
Классы: 8,9,10

На доске написаны три натуральных числа, не превосходящих 40. За один ход можно увеличить любое из написанных чисел на число процентов, равное одному из двух оставшихся чисел, если в результате получится целое число. Существуют ли такие исходные числа, что за несколько ходов одно из чисел на доске можно сделать больше 2011?

Прислать комментарий     Решение

Задача 67171

Тема:   [ Кооперативные алгоритмы ]
Сложность: 4
Классы: 6,7,8

Кащей заточил в темницу толпу пленников и сказал им: «Завтра вам предстоит испытание. Я выберу нескольких из вас (кого захочу, но минимум троих), посажу за круглый стол в каком-то порядке (в каком пожелаю) и каждому на лоб наклею бумажку с нарисованной на ней фигуркой. Фигурки могут повторяться, но никакие две разные фигурки не будут наклеены на одинаковое число людей. Каждый посмотрит на фигурки остальных, а своей не увидит. Подавать друг другу какие-то знаки запрещено. После этого я наклейки сниму и велю всех развести по отдельным камерам. Там каждый должен будет на листе бумаги нарисовать фигурку. Если хоть один нарисует такую, какая была у него на лбу, всех отпущу. Иначе останетесь здесь навечно».

Как пленникам договориться действовать, чтобы спастись?

Прислать комментарий     Решение

Задача 115497

Темы:   [ Индекс векторного поля ]
[ Обход графов ]
[ Вспомогательная раскраска (прочее) ]
[ Доказательство от противного ]
Сложность: 5-
Классы: 9,10,11

В некоторых клетках квадрата 20×20 стоит стрелочка в одном из четырёх направлений. На границе квадрата все стрелочки смотрят вдоль границы по часовой стрелке (см. рис.). Кроме того, стрелочки в соседних (возможно, по диагонали) клетках не смотрят в противоположных направлениях. Докажите, что найдётся клетка, в которой стрелочки нет.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .