ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Шноль Д.Э.

Фильтр
Сложность с по   Класс с по  
Все задачи автора

Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



Задача 117013

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 5,6,7

Автор: Шноль Д.Э.

Мачеха приказала Золушке сшить квадратное одеяло из пяти прямоугольных кусков так, чтобы длины сторон всех кусков были попарно различны и составляли целое число дюймов. Сможет ли Золушка выполнить задание без помощи феи-крестной?

Прислать комментарий     Решение

Задача 116370

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 8,9

Автор: Шноль Д.Э.

На дверце сейфа написано произведение степеней anbmck. Чтобы дверца открылась, надо заменить каждую из шести букв натуральным числом так, чтобы в произведении получился куб натурального числа. Пинки, не подумав, уже заменил какие-то три буквы числами. Всегда ли Брейн сможет заменить три оставшиеся, чтобы дверца открылась?
Прислать комментарий     Решение


Задача 116975

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 5,6,7

Автор: Шноль Д.Э.

Дима разрезал картонный квадрат 8×8 по границам клеток на шесть частей (см. рисунок). Оказалось, что квадрат остался крепким: если положить его на стол и потянуть (вдоль стола) за любую часть в любом направлении, то весь квадрат потянется вместе с этой частью.

Покажите, как разрезать такой квадрат по границам клеток не менее чем на 27 частей, чтобы квадрат оставался крепким и в каждой части было не более 16 клеток.

Прислать комментарий     Решение

Задача 111903

Темы:   [ Геометрия на клетчатой бумаге ]
[ Многоугольники и многогранники с вершинами в узлах решетки ]
[ Разные задачи на разрезания ]
Сложность: 5
Классы: 6,7,8,9

Автор: Шноль Д.Э.

Начертите два четырехугольника с вершинами в узлах сетки, из которых можно сложить а) как треугольник, так и пятиугольник; б) и треугольник, и четырехугольник, и пятиугольник. Покажите, как это можно сделать.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 [Всего задач: 49]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .