ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Для каких n существует такая замкнутая несамопересекающаяся ломаная из n звеньев, что каждая прямая, содержащая одно из звеньев этой ломаной, содержит ещё хотя бы одно её звено? Натуральное число умножили на 5, результат снова умножили на 5 и так далее, всего сделали $k$ умножений. Оказалось, что в десятичной записи исходного числа и полученных $k$ чисел нет 99 прямых разбивают плоскость на n частей. Найдите все возможные значения n, меньшие 199. Дана геометрическая прогрессия, знаменатель которой — целое число (не равное 0 и -1). Докажите, что сумма любого числа произвольно выбранных её членов не может равняться никакому члену этой прогрессии. а) Существует ли последовательность натуральных чисел a1, a2, a3, ..., обладающая следующим свойством: ни один член последовательности не равен сумме нескольких других и an ≤ n10 при любом n? б) Тот же вопрос, если an ≤ n Даны 3 скрещивающиеся прямые. Докажите, что они будут общими перпендикулярами к своим общим перпендикулярам. В трёхгранный угол с вершиной S вписана сфера с центром в точке O. Покажите, что для любой последовательности $a_0$, $a_1$, ..., $a_n$, ..., состоящей из единиц и минус единиц, найдутся такие $n$ и $k$, что $|a_0a_1...a_k + a_1a_2...a_{k+1} + ... + a_na_{n+1}...a_{n+k}| = 2017.$ |
Страница: 1 2 3 4 5 >> [Всего задач: 23]
Можно ли число 1/10 представить в виде произведения десяти положительных правильных дробей?
Перед Шариком лежит бесконечное число котлет, на каждой сидит по мухе. На каждом ходу Шарик последовательно делает две операции: 1) съедает какую-то котлету вместе со всеми сидящими на ней мухами; 2) пересаживает одну муху с одной котлеты на другую (на котлете может быть сколько угодно мух). Шарик хочет съесть не более миллиона мух. Докажите, что он не может действовать так, чтобы каждая котлета была съедена на каком-то ходу.
а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках. б) Внутри окружности находится правильный 2n-угольник (n > 2), его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.
На окружности отметили n точек, разбивающие её на n дуг. Окружность повернули вокруг центра на угол 2πk/n (при некотором натуральном k), в результате чего отмеченные точки перешли в n новых точек, разбивающих окружность на n новых дуг.
Покажите, что для любой последовательности $a_0$, $a_1$, ..., $a_n$, ..., состоящей из единиц и минус единиц, найдутся такие $n$ и $k$, что $|a_0a_1...a_k + a_1a_2...a_{k+1} + ... + a_na_{n+1}...a_{n+k}| = 2017.$
Страница: 1 2 3 4 5 >> [Всего задач: 23]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке