Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Прокопенко Д.

Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число.

Вниз   Решение


Дан равнобедренный треугольник ABC с основанием AC. Доказать, что конец D отрезка BD, выходящего из вершины B, параллельного основанию и равного боковой стороне треугольника, является центром вневписанной окружности треугольника.

ВверхВниз   Решение


Даны две окружности, касающиеся друг друга внутренним образом в точке A); из точки B большей окружности, диаметрально противоположной точке A, проведена касательная BC к меньшей окружности. Прямые BC и AC пересекает большую окружность в точках D и E соответственно. Докажите, что дуги DE и BE равны.

ВверхВниз   Решение


Нарисован угол, и ещё имеется только циркуль.
  а) Какое наименьшее число окружностей надо провести, чтобы наверняка определить, является ли данный угол острым?
  б) Как определить, равен ли данный угол 31° (разрешается проводить сколько угодно окружностей)?

ВверхВниз   Решение


В треугольник ABC вписан ромб CKLN так, что точка L лежит на стороне AB, точка N – на стороне AC, точка K – на стороне BC. Пусть O1, O2 и O – центры описанных окружностей треугольников ACL, BCL и ABC соответственно. Пусть P – точка пересечения описанных окружностей треугольников ANL и BKL, отличная от L. Докажите, что точки O1, O2, O и P лежат на одной окружности.

Вверх   Решение

Все задачи автора

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 65016

Темы:   [ Треугольник, образованный основаниями двух высот и вершиной ]
[ Вписанные и описанные окружности ]
[ Теорема синусов ]
Сложность: 3+
Классы: 8,9,10,11

В остроугольном треугольнике ABC  AA1, BB1 и CC1 – высоты. Прямые AA1 и B1C1 пересекаются в точке K. Окружности, описанные вокруг треугольников A1KC1 и A1KB1, вторично пересекают прямые AB и AC в точках N и L соответственно. Докажите, что
  а) сумма диаметров этих окружностей равна стороне BC.

  б)  

Прислать комментарий     Решение

Задача 65365

Темы:   [ Перпендикулярные прямые ]
[ Теорема Пифагора (прямая и обратная) ]
[ ГМТ - прямая или отрезок ]
[ Радикальная ось ]
Сложность: 3+
Классы: 8,9,10,11

Через вершины B и C треугольника ABC провели перпендикулярно прямой BC прямые b и c соответственно. Серединные перпендикуляры к сторонам AC и AB пересекают прямые b и c в точках P и Q соответственно. Докажите, что прямая PQ перпендикулярна медиане AM треугольника ABC.

Прислать комментарий     Решение

Задача 65444

Темы:   [ Наглядная геометрия ]
[ Биссектриса угла ]
[ Необычные построения (прочее) ]
Сложность: 3+
Классы: 6,7,8

У листа бумаги только один ровный край. Лист согнули, потом разогнули обратно. A – общая точка ровного края и линии сгиба. Постройте перпендикуляр к этой линии в точке A. Сделайте это без помощи чертёжных инструментов, а лишь перегибая бумагу.

Прислать комментарий     Решение

Задача 115861

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Вписанный угол равен половине центрального ]
Сложность: 3+
Классы: 8,9,10,11

В треугольник ABC вписан ромб CKLN так, что точка L лежит на стороне AB, точка N – на стороне AC, точка K – на стороне BC. Пусть O1, O2 и O – центры описанных окружностей треугольников ACL, BCL и ABC соответственно. Пусть P – точка пересечения описанных окружностей треугольников ANL и BKL, отличная от L. Докажите, что точки O1, O2, O и P лежат на одной окружности.

Прислать комментарий     Решение

Задача 115865

Темы:   [ Вписанные и описанные окружности ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 8,9,10,11

Точки B1 и B2 лежат на луче AM, а точки C1 и C2 на луче AK. Окружность с центром O вписана в треугольники AB1C1 и AB2C2.
Докажите, что углы B1OB2 и C1OC2 равны.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .