ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Доказать, что связный граф можно обойти, проходя по каждому ребру дважды. В каждый угол треугольника ABC вписана окружность, касающаяся
описанной окружности. Пусть A1, B1 и C1 — точки
касания этих окружностей с описанной окружностью. Докажите, что
прямые AA1, BB1 и CC1 пересекаются в одной точке.
В треугольнике ABC сторона AB больше стороны BC. Пусть A1 и B1 – середины сторон BC и AC, а B2 и C2 – точки касания вписанной окружности со сторонами AC и AB. Докажите, что отрезки A1B1 и B2C2 пересекаются в точке X, лежащей на биссектрисе угла B. На сторонах AB и BC правильного треугольника
ABC взяты точки M и N так, что MN| AC, E — середина
отрезка AN, D — центр треугольника BMN. Найдите величины
углов треугольника CDE.
а) Докажите, что любой многоугольник можно разрезать на части и
сложить из них прямоугольник со стороной 1.
|
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
В трапеции ABCD основание BC в два раза меньше основания AD. Из вершины D опущен перпендикуляр DE на сторону AB. Докажите, что СЕ = CD.
Дан прямоугольный треугольник ABC с прямым углом C, вне треугольника взята точка D, так что ∠ADC=∠BAC и отрезок CD пересекает гипотенузу AB в точке E. Известно, что расстояние от точки E до катета AC равно радиусу описанной окружности треугольника ADE. Найдите углы треугольника ABC.
В пятиугольнике ABCDE углы ABC и AED – прямые, AB = AE и BC = CD = DE. Диагонали BD и CE пересекаются в точке F.
Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой.
Вокруг прямоугольного треугольника ABC с прямым углом C описана окружность, на меньших дугах AC и BC взяты их середины – K и P соответственно. Отрезок KP пересекает катет AC в точке N. Центр вписанной окружности треугольника ABC – I. Найти угол NIC.
Страница: << 1 2 3 4 5 >> [Всего задач: 24]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке