Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Бакаев Е.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну.
Как можно сделать это за два взвешивания на чашечных весах без гирь, если про любые два куска на глаз видно, какой весит больше?

Вниз   Решение


Последовательность натуральных чисел  a1, a2, ..., an, ...  такова, что для каждого n уравнение  an+2x² + an+1x + an = 0  имеет действительный корень. Может ли число членов этой последовательности быть
  а) равным 10;
  б) бесконечным?

ВверхВниз   Решение


Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его.

ВверхВниз   Решение


Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D.
Докажите, что касательные к ней в этих точках параллельны общим касательным к двум первым окружностям.

ВверхВниз   Решение


Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет?

ВверхВниз   Решение


Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников.

ВверхВниз   Решение


В углу шахматной доски 8×8 стоит фишка. Петя и Вася двигают фишку по очереди, начинает Петя. Он делает фишкой один ход как ферзём (пройденной считается только клетка, куда в итоге переместилась фишка), а Вася – два хода как королём (обе клетки считаются пройденными). Нельзя ставить фишку на клетку, где она уже бывала (включая исходную клетку). Кто не сможет сделать ход – проигрывает. Кто из ребят может играть так, чтобы всегда выигрывать, как бы ни играл соперник?

ВверхВниз   Решение


В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга?

ВверхВниз   Решение


Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?

Вверх   Решение

Все задачи автора

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



Задача 66533

Тема:   [ Треугольники (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Внутри равнобедренного треугольника ABC отмечена точка K так, что AB = BC = CK и ∠KAC = 30°. Найдите угол AKB.
Прислать комментарий     Решение


Задача 66538

Тема:   [ Вписанные и описанные окружности ]
Сложность: 4
Классы: 8,9,10,11

Биссектриса угла ABC пересекает описанную окружность w треугольника ABC в точках B и L. Точка M – середина отрезка AC. На дуге ABC окружности w выбрана точка E так, что EMBL. Прямые AB и BC пересекают прямую EL в точках P и Q соответственно. Докажите, что PE = EQ.
Прислать комментарий     Решение


Задача 67143

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

Существует ли натуральное число, которое можно представить в виде произведения двух палиндромов более чем 100 способами? (Палиндромом называется натуральное число, которое одинаково читается как слева направо, так и справа налево.)
Прислать комментарий     Решение


Задача 67148

Темы:   [ Гомотетия помогает решить задачу ]
[ Вписанные и описанные многоугольники ]
[ Касательные прямые и касающиеся окружности (прочее) ]
Сложность: 4
Классы: 9,10,11

Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.

Прислать комментарий     Решение


Задача 67150

Темы:   [ Свойства частей, полученных при разрезаниях ]
[ Против большей стороны лежит больший угол ]
Сложность: 4
Классы: 8,9,10,11

Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .