ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Есть шесть кусков сыра разного веса. Известно, что можно разложить сыр на две кучки по три куска так, чтобы кучки весили поровну. Последовательность натуральных чисел a1, a2, ..., an, ... такова, что для каждого n уравнение an+2x² + an+1x + an = 0 имеет действительный корень. Может ли число членов этой последовательности быть Во вписанно-описанном четырехугольнике отметили центры $O$, $I$ описанной и вписанной окружностей и середину $M$ одной из диагоналей, после чего сам четырехугольник стерли. Восстановите его. Две окружности пересекаются в точках A и B. Третья окружность касается их обеих и пересекает прямую AB в точках C и D. Сколько (максимум) кругов можно расположить на плоскости так, чтобы каждые два из них пересекались, а никакие три – нет? Шайка разбойников отобрала у купца мешок монет. Каждая монета стоит целое число грошей. Оказалось, что какую бы монету ни отложить, оставшиеся монеты можно разделить между разбойниками так, чтобы каждый получил одинаковую сумму в грошах. Докажите, что если отложить одну монету, то число монет разделится на число разбойников. В углу шахматной доски 8×8 стоит фишка. Петя и Вася двигают фишку по очереди, начинает Петя. Он делает фишкой один ход как ферзём (пройденной считается только клетка, куда в итоге переместилась фишка), а Вася – два хода как королём (обе клетки считаются пройденными). Нельзя ставить фишку на клетку, где она уже бывала (включая исходную клетку). Кто не сможет сделать ход – проигрывает. Кто из ребят может играть так, чтобы всегда выигрывать, как бы ни играл соперник? В турнире по гандболу участвуют 20 команд. После того как каждая команда сыграла с каждой по разу, оказалось, что количество очков у всех команд разное. После того как каждая команда сыграла с каждой по второму разу, количество очков у всех команд стало одинаковым. В гандболе за победу команда получает 2 очка, за ничью 1 очко, за поражение — 0 очков. Верно ли, что найдутся две команды, по разу выигравшие друг у друга? Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными? |
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]
Внутри равнобедренного треугольника ABC отмечена точка K так, что AB = BC = CK и ∠KAC = 30°. Найдите угол AKB.
Биссектриса угла ABC пересекает описанную окружность w треугольника ABC в точках B и L. Точка M – середина отрезка AC. На дуге ABC окружности w выбрана точка E так, что EM ∥ BL. Прямые AB и BC пересекают прямую EL в точках P и Q соответственно. Докажите, что PE = EQ.
Существует ли натуральное число, которое можно представить в виде произведения двух палиндромов более чем 100 способами? (Палиндромом называется натуральное число, которое одинаково читается как слева направо, так и справа налево.)
Большая окружность вписана в ромб, каждая из двух меньших окружностей касается двух сторон ромба и большой окружности, как на рисунке. Через точки касания окружностей со сторонами ромба провели четыре штриховые прямые, как на рисунке. Докажите, что они образуют квадрат.
Дан остроугольный неравнобедренный треугольник. Одним действием разрешено разрезать один из имеющихся треугольников по медиане на два треугольника. Могут ли через несколько действий все треугольники оказаться равнобедренными?
Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 149]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке