|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Семь грибников собрали вместе 100 грибов. Обязательно ли найдутся два грибника, собравшие вместе не менее чем 36 грибов, если количества грибов, собранных каждым, попарно различаются? |
Страница: 1 2 >> [Всего задач: 8]
Докажите, что в арифметической прогрессии с первым членом, равным 1, и разностью, равной 729, найдётся бесконечно много членов, являющихся степенью числа 10.
Два треугольника A1B1C1 и A2B2C2, площади которых равны соответственно S1 и S2, расположены так, что лучи A1B1 и A2B2, B1C1 и B2C2, C1A1 и C2A2 противоположно направлены. Найдите площадь треугольника с вершинами в серединах отрезков A1A2, B1B2, C1C2.
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.
Дан правильный треугольник ABC. Некоторая прямая, параллельная прямой AC, пересекает прямые AB и BC в точках M и P соответственно. Точка D — центр правильного треугольника PMB, точка E — середина отрезка AP. Найдите углы треугольника DEC.
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|