ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
|||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Докажите, что в остроугольном треугольнике расстояние от любой вершины до соответствующего центра вневписанной окружности меньше чем сумма двух наибольших сторон треугольника. Даны две окружности, пересекающиеся в точках $A$, $B$, и точка $O$, лежащая вне их. Циркулем и линейкой постройте такой луч с началом $O$, пересекающий первую окружность в точке $C$, а вторую – в точке $D$, чтобы отношение $OC:OD$ было максимальным. a1, a2, a3, ..., an, ... – возрастающая последовательность натуральных чисел. Известно, что an+1 ≤ 10an при всех натуральных n.
Числовая последовательность a0 , a1 , a2 , такова, что при всех неотрицательных m и n
( m Найдите a1995 , если a1=1 . Докажите, что если числа a1, a2, ..., am отличны от нуля и для любого целого k = 0, 1, ..., n (n < m – 1) выполняется равенство:
В остроугольном треугольнике ABC проведены высоты BB', CC'. Через A и C' проведены две окружности, касающиеся BC в точках P и Q. Имеется набор из 20 гирь, с помощью которых можно взвесить любой целый вес
от 1 до 1997 г (гири кладутся на одну чашку весов, измеряемый вес – на другую). Каков минимально возможный вес самой тяжелой гири такого набора, если:
Даны многоугольник, прямая l и точка P на прямой l в общем положении (то есть все прямые, содержащие стороны многоугольника, пересекают l в различных точках, отличных от P). Отметим те вершины многоугольника, для каждой из которых прямые, на которых лежат выходящие из неё стороны многоугольника, пересекают l по разные стороны от точки P. Докажите, что точка P лежит внутри многоугольника тогда и только тогда, когда по каждую сторону от l отмечено нечётное число вершин. Используя три различных знака арифметических действий и знак равенства, получите верное равенство из записи сегодняшней даты: 16032014. Может ли треугольник быть разверткой четырехугольной пирамиды? |
Страница: 1 [Всего задач: 4]
В очереди под дождём стояли 11 человек, каждый держал зонтик. Они стояли вплотную, то есть зонтики соседей соприкасались (см. рис).
Дождь закончился, люди закрыли зонтики и встали, соблюдая дистанцию в 50 см между соседями. Во сколько раз уменьшилась длина очереди? Людей можно считать точками, а зонтики — кругами радиуса 50 см.
Пит М. на квадратном холсте нарисовал композицию из прямоугольников. На рисунке даны площади нескольких прямоугольников, в том числе синего и красного квадратов. Чему равна сумма площадей двух серых прямоугольников?
Если из квадратных плиток, которые отличаются только расцветкой, сложить прямоугольник $3\times 4$, как на рисунке, то целиком в нем поместится $6$ черепашек. А сколько черепашек поместится целиком в составленном таким же образом прямоугольнике $20\times 21$?
Может ли треугольник быть разверткой четырехугольной пирамиды?
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке