ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Какой угол образуют часовая и минутная стрелки в 4 часа 12 минут? Докажите, что
Дано несколько точек и для некоторых пар (A, B) этих точек взяты
векторы
На сторонах BC, CA и AB треугольника ABC взяты
точки A1, B1 и C1, причем
AA1, BB1 и CC1 пересекаются в
одной точке. Докажите, что
SA1B1C1/SABC Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните
площадь поверхности этого куба и площадь поверхности фигуры, которая
получится, если из него вынуть все "угловые" кубики.
На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан? На 99 карточках пишутся числа 1, 2, 3, ..., 99. Затем карточки перемешиваются, раскладываются чистыми сторонами вверх и на чистых сторонах снова пишутся числа 1, 2, 3, 4, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Доказать, что в результате получится чётное число. При каких значениях m уравнения mx – 1000 = 1001 и 1001x = m – 1000x имеют общий корень? Пусть O — центр прямоугольника ABCD. Найдите
ГМТ M, для которых
AM Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$? Дан правильный 12-угольник A1A2...A12. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что ∠CED > 45°.
Дан правильный 12-угольник A1A2...A12.
Натуральные числа от 1 до 200 разбили на 50 множеств.
На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что KM || AC. Отрезки AM и KC пересекаются в точке O. Известно, что AK = AO и KM = MC. Докажите, что AM = KB.
Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке