Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Мурашкин М.В.

Фильтр
Сложность с по   Класс с по  
Выбрано 11 задач
Версия для печати
Убрать все задачи

Какой угол образуют часовая и минутная стрелки в 4 часа 12 минут?

Вниз   Решение


Докажите, что
а)  S3 $ \leq$ ($ \sqrt{3}$/4)3(abc)2;
б)  3hahbhc $ \leq$ 43$ \sqrt{S}$ $ \leq$ 3rarbrc.

ВверхВниз   Решение


Дано несколько точек и для некоторых пар (A, B) этих точек взяты векторы $ \overrightarrow{AB}$, причем в каждой точке начинается столько же векторов, сколько в ней заканчивается. Докажите, что сумма всех выбранных векторов равна  $ \overrightarrow{0}$.

ВверхВниз   Решение


На сторонах BC, CA и AB треугольника ABC взяты точки A1, B1 и C1, причем  AA1, BB1 и CC1 пересекаются в одной точке. Докажите, что  SA1B1C1/SABC $ \leq$ 1/4.

ВверхВниз   Решение


Куб сложен из 27 одинаковых кубиков (см. рис.). Сравните площадь поверхности этого куба и площадь поверхности фигуры, которая получится, если из него вынуть все "угловые" кубики.

ВверхВниз   Решение


На бирже Цветочного города 1 лимон и 1 банан можно обменять на 2 апельсина и 23 вишни, а 3 лимона – на 2 банана, 2 апельсина и 14 вишен. Что дороже: лимон или банан?

ВверхВниз   Решение


На 99 карточках пишутся числа 1, 2, 3, ..., 99. Затем карточки перемешиваются, раскладываются чистыми сторонами вверх и на чистых сторонах снова пишутся числа 1, 2, 3, 4, ..., 99. Для каждой карточки числа, стоящие на ней, складываются и 99 полученных сумм перемножаются. Доказать, что в результате получится чётное число.

ВверхВниз   Решение


При каких значениях m уравнения  mx – 1000 = 1001  и  1001x = m – 1000x  имеют общий корень?

ВверхВниз   Решение


Пусть O — центр прямоугольника ABCD. Найдите ГМТ M, для которых  AM $ \geq$ OM, BM $ \geq$ OM, CM $ \geq$ OM и DM $ \geq$ OM.

ВверхВниз   Решение


Бесконечные возрастающие арифметические прогрессии $a_{1}, a_{2}, a_{3}, \ldots$ и $b_{1}, b_{2}, b_{3}, \ldots$ состоят из положительных чисел. Известно, что отношение $\frac{a_{k}}{b_{k}}$ целое при любом $k$. Верно ли, что это отношение не зависит от $k$?

ВверхВниз   Решение


Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов    выбрать семь, сумма которых равна нулевому вектору?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



Задача 116804

Темы:   [ Неравенства для углов треугольника ]
[ Против большей стороны лежит больший угол ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что  ∠CED > 45°.

Прислать комментарий     Решение

Задача 66104

Темы:   [ Правильные многоугольники ]
[ Векторы сторон многоугольников ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 9,10,11

Дан правильный 12-угольник A1A2...A12.
Можно ли из 12 векторов    выбрать семь, сумма которых равна нулевому вектору?

Прислать комментарий     Решение

Задача 110207

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Прислать комментарий     Решение

Задача 111329

Темы:   [ Вспомогательные равные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

На сторонах AB и BC треугольника ABC выбраны точки K и M соответственно так, что  KM || AC.  Отрезки AM и KC пересекаются в точке O. Известно, что  AK = AO  и  KM = MC.  Докажите, что  AM = KB.

Прислать комментарий     Решение

Задача 111787

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 7,8,9

Петя задумал натуральное число и для каждой пары его цифр выписал на доску их разность. После этого он стер некоторые разности, и на доске остались числа 2, 0, 0, 7. Какое наименьшее число мог задумать Петя?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 33]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .