Страница:
<< 1 2
3 >> [Всего задач: 12]
|
|
|
Сложность: 3+ Классы: 7,8,9,10,11
|
Плоскость разбита на части несколькими прямыми, среди которых есть непараллельные. Те части, граница которых состоит из двух лучей, закрасили. После этого проведена ещё одна прямая. Докажите, что, независимо от положения новой прямой, по обе стороны от неё найдутся закрашенные точки.

Пример расположения прямых (без последней прямой) изображен на рисунке.
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Можно ли поместить правильный треугольник внутрь правильного шестиугольника так, чтобы из любой вершины шестиугольника были видны все три вершины треугольника? (
Точка $A$ видна из точки $B$, если отрезок $AB$ не содержит внутренних точек треугольника.)
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
Клетчатую доску $20\times 20$ разбили на двухклеточные доминошки. Докажите, что некоторая прямая содержит центры хотя бы десяти из этих доминошек.
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?
|
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан треугольник $ABC$. Пусть $I$ – центр его вписанной окружности, $P$ – такая точка на стороне $AB$, что угол $PIB$ прямой, $Q$ – точка, симметричная точке $I$ относительно вершины $A$. Докажите, что точки $C$, $I$, $P$, $Q$ лежат на одной окружности.
Страница:
<< 1 2
3 >> [Всего задач: 12]