Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что для любого тетраэдра его самый маленький двугранный угол (из шести) не больше чем двугранный угол правильного тетраэдра.

Вниз   Решение


Даны два треугольника ABC и A'B'C', имеющие общие описанную и вписанную окружности, и точка P, лежащая внутри обоих треугольников.
Докажите, что сумма расстояний от P до сторон треугольника ABC равна сумме расстояний от P до сторон треугольника A'B'C'.

ВверхВниз   Решение


Автор: Ягудин М.

Дан тетраэдр ABCD. В грани ABC и ABD вписаны окружности с центрами O1, O2, касающиеся ребра AB в точках T1, T2. Плоскость πAB проходит через середину отрезка T1T2 и перпендикулярна O1O2. Аналогично определяются плоскости πAC, πBC, πAD, πBD, πCD. Докажите, что все эти шесть плоскостей проходят через одну точку.

ВверхВниз   Решение


Автор: Тебо В.

Пусть A1, B1 и C1 — основания высот AA1, BB1 и CC1 треугольника ABC. Докажите, что прямые Эйлера треугольников AB1C1, BA1C1 и CA1B1 пересекаются на окружности девяти точек треугольника ABC.

ВверхВниз   Решение


Найдите необходимые и достаточные условия, которым должны удовлетворять числа a, b, α и β, чтобы прямоугольник размером a×b можно было разрезать на прямоугольники размером α×β. Например, можно ли прямоугольник размером 50×60 разрезать на прямоугольники размером
а) 20×15;   б) 5×8;   в) 6,25×15;   г)  

ВверхВниз   Решение


Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.

Вверх   Решение

Все задачи автора

Страница: 1 [Всего задач: 3]      



Задача 67112

Темы:   [ ГМТ (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Ортогональная (прямоугольная) проекция ]
[ Векторы помогают решить задачу ]
[ Центр масс ]
Сложность: 3+
Классы: 8,9,10,11

Даны окружность $\omega$ и не лежащая на ней точка $P$. Пусть $ABC$ – произвольный правильный треугольник, вписанный в $\omega$, а точки $A'$, $B'$, $C'$ – проекции $P$ на прямые $BC$, $CA$, $AB$. Найдите геометрическое место центров тяжести треугольников $A'B'C'$.
Прислать комментарий     Решение


Задача 67355

Темы:   [ ГМТ - окружность или дуга окружности ]
[ Вспомогательные подобные треугольники ]
Сложность: 4+
Классы: 9,10,11

Дан отрезок $AB$. Пусть $C$ – произвольная точка на серединном перпендикуляре к $AB$; $O$ – точка на описанной окружности треугольника $ABC$, противоположная $C$; эллипс с центром $O$ касается прямых $AB$, $BC$, $CA$. Найдите геометрическое место точек касания эллипса с прямой $BC$.
Прислать комментарий     Решение


Задача 67249

Темы:   [ ГМТ - прямая или отрезок ]
[ Изогональное сопряжение ]
[ Инверсия помогает решить задачу ]
[ Гомотетия помогает решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 6
Классы: 10,11

Пусть $ABC$ – треугольник Понселе, точка $A_1$ симметрична $A$ относительно центра вписанной окружности $I$, точка $A_2$ изогонально сопряжена $A_1$ относительно $ABC$. Найдите ГМТ $A_2$.
Прислать комментарий     Решение


Страница: 1 [Всего задач: 3]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .