Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Подлипский О.К.

Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Различные числа a, b и c таковы, что уравнения  x² + ax + 1 = 0  и  x² + bx + c = 0  имеют общий действительный корень. Кроме того, общий действительный корень имеют уравнения  x² + x + a = 0  и  x² + cx + b = 0.  Найдите сумму  a + b + c.

Вниз   Решение


В квадрате 7×7 клеток закрасьте некоторые клетки так, чтобы в каждой строке и в каждом столбце оказалось ровно по три закрашенных клетки.

ВверхВниз   Решение


Числовое множество M, содержащее 2003 различных числа, таково, что для каждых двух различных элементов a, b из M число
   рационально. Докажите, что для любого a из M число    рационально.

ВверхВниз   Решение


Окружности $ \alpha$, $ \beta$ и $ \gamma$ имеют одинаковые радиусы и касаются сторон углов A, B и C треугольника ABC соответственно. Окружность $ \delta$ касается внешним образом всех трех окружностей $ \alpha$, $ \beta$ и $ \gamma$. Докажите, что центр окружности $ \delta$ лежит на прямой, проходящей через центры вписанной и описанной окружностей треугольника ABC.

ВверхВниз   Решение


Даны две точки A и B и окружность. Найти на окружности точку X так, чтобы прямые AX и BX отсекли на окружности хорду CD, параллельную данной прямой MN.

ВверхВниз   Решение


Назовём натуральное число интересным, если сумма его цифр – простое число.
Какое наибольшее количество интересных чисел может быть среди пяти подряд идущих натуральных чисел?

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 65112

Темы:   [ Десятичная система счисления ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 8,9,10

Назовём натуральное число интересным, если сумма его цифр – простое число.
Какое наибольшее количество интересных чисел может быть среди пяти подряд идущих натуральных чисел?

Прислать комментарий     Решение

Задача 66160

Темы:   [ Многочлены (прочее) ]
[ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10,11

Пусть P(x) – многочлен степени  n ≥ 2  с неотрицательными коэффициентами, а a, b и c – длины сторон некоторого остроугольного треугольника.
Докажите, что числа    также являются длинами сторон некоторого остроугольного треугольника.

Прислать комментарий     Решение

Задача 109684

Темы:   [ Деление с остатком ]
[ Арифметика остатков (прочее) ]
[ Упорядочивание по возрастанию (убыванию) ]
[ Доказательство от противного ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Существуют ли 19 таких попарно различных натуральных чисел с одинаковой суммой цифр, что их сумма равна 1999?

Прислать комментарий     Решение

Задача 110056

Темы:   [ Итерации ]
[ Квадратные уравнения и системы уравнений ]
Сложность: 3+
Классы: 9,10,11

Приведённый квадратный трёхчлен  f(x) имеет два различных корня. Может ли так оказаться, что уравнение  f(f(x)) = 0  имеет три различных корня, а уравнение  f(f(f(x))) = 0  – семь различных корней?

Прислать комментарий     Решение

Задача 110083

Темы:   [ Таблицы и турниры (прочее) ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Раскраски ]
Сложность: 3+
Классы: 7,8,9

Можно ли клетки доски 5×5 покрасить в 4 цвета так, чтобы клетки, стоящие на пересечении любых двух строк и любых двух столбцов, были покрашены не менее чем в три цвета?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .