Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Произволов В.В.

Вячеслав Викторович Произволов (род. в 1939) - математик, к.ф-м.н., автор книги "Задачи на вырост"

Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Существует ли бесконечное число таких троек целых чисел x, y, z, что   x² + y² + z² = x³ + y³ + z³?

Вниз   Решение


В вершинах выпуклого n-угольника расставлены m фишек  (m > n).  За один ход разрешается передвинуть две фишки, стоящие в одной вершине, в соседние вершины: одну – вправо, вторую – влево. Докажите, что если после нескольких ходов в каждой вершине n-угольника будет стоять столько же фишек, сколько и вначале, то количество сделанных ходов кратно n.

ВверхВниз   Решение


Числа a и b таковы, что первое уравнение системы
{ cos x=ax+b
sin x+a=0

имеет ровно два решения. Докажите, что система имеет хотя бы одно решение.

ВверхВниз   Решение


На плоскости дан квадрат 8×8, разбитый на клеточки 1×1. Его покрывают прямоугольными равнобедренными треугольниками (два треугольника закрывают одну клетку). Имеется 64 черных и 64 белых треугольника. Рассматриваются "правильные" покрытия – такие, что каждые два треугольника, имеющие общую сторону, разного цвета. Сколько существует правильных покрытий?

ВверхВниз   Решение


На плоскости даны три точки A, B, C. Через точку C проведите прямую так, чтобы произведение расстояний от этой прямой до A и B было максимальным. Всегда ли такая прямая единственна?

ВверхВниз   Решение


Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?

ВверхВниз   Решение


Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?

ВверхВниз   Решение


Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

Вверх   Решение

Все задачи автора

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 87]      



Задача 116268

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Принцип крайнего (прочее) ]
[ Две пары подобных треугольников ]
Сложность: 3
Классы: 8,9,10,11

Грани выпуклого многогранника – подобные треугольники.
Докажите, что многогранник имеет две пары равных граней (одну пару равных граней и еще одну пару равных граней).

Прислать комментарий     Решение

Задача 116386

Темы:   [ Средняя линия треугольника ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3
Классы: 8,9

На стороне AB треугольника ABC взята такая точка P, что  AP = 2PB,  а на стороне AC – ее середина, точка Q. Известно, что  CP = 2PQ.
Докажите, что треугольник ABC прямоугольный.

Прислать комментарий     Решение

Задача 116712

Темы:   [ Многогранники и многоугольники (прочее) ]
[ Комбинаторная геометрия (прочее) ]
[ Доказательство от противного ]
Сложность: 3
Классы: 10,11

Из каждой вершины выпуклого многогранника выходят ровно три ребра, причём хотя бы два из этих трёх рёбер равны.
Докажите, что многогранник имеет хотя бы три равных ребра.

Прислать комментарий     Решение

Задача 98239

Темы:   [ Неравенство треугольника (прочее) ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Остовы многогранных фигур ]
[ Тетраэдр (прочее) ]
Сложность: 3+
Классы: 8,9,10

Докажите, что из шести ребер тетраэдра можно сложить два треугольника.

Прислать комментарий     Решение

Задача 98307

Темы:   [ Параллельность прямых и плоскостей ]
[ Уравнение плоскости ]
[ Куб ]
[ Скалярное произведение ]
[ Двоичная система счисления ]
[ Гомотетия помогает решить задачу ]
Сложность: 3+
Классы: 10,11

Существует ли в пространстве куб, расстояния от вершин которого до данной плоскости равны 0, 1, 2, 3, 4, 5, 6, 7?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .