ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
![]() |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В стране N 1998 городов, и из каждого осуществляются беспосадочные перелеты в три других города (все авиарейсы двусторонние). Известно, что из каждого города, сделав несколько пересадок, можно долететь до любого другого. Министерство Безопасности хочет объявить закрытыми 200 городов, никакие два из которых не соединены авиалинией. Докажите, что это можно сделать так, чтобы можно было долететь из каждого незакрытого города в любой другой, не делая пересадок в закрытых городах. На координатной плоскости нарисовано n парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более 2(n – 1) углов (то есть точек пересечения пары парабол). В тетраэдр ABCD , длины всех ребер которого не более 100, можно поместить две непересекающиеся сферы диаметра 1. Докажите, что в него можно поместить одну сферу диаметра 1,01. На плоскости дано конечное множество точек X и правильный треугольник T . Известно, что любое подмножество X' множества X , состоящее из не более 9 точек, можно покрыть двумя параллельными переносами треугольника T . Докажите, что все множество X можно покрыть двумя параллельными переносами T .
Каждую грань тетраэдра можно поместить в круг радиуса 1 . Докажите, что весь тетраэдр можно поместить в шар радиуса На плоскости нарисовано несколько прямоугольников со сторонами, параллельными осям координат. Известно, что каждые два прямоугольника можно пересечь вертикальной или горизонтальной прямой. Докажите, что можно провести одну горизонтальную и одну вертикальную прямую так, чтобы любой прямоугольник пересекался хотя бы с одной из этих двух прямых. Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр? Юра начертил на клетчатой бумаге прямоугольник (по клеточкам) и нарисовал на нём картину. После этого он нарисовал вокруг картины рамку шириной в одну клеточку (см. рис.). Оказалось, что площадь картины равна площади рамки. Какие размеры могла иметь Юрина картина? Разрежьте «печенье» на 16 равных частей (т. е. одинаковых по размеру и по форме). Разрезы не обязательно прямолинейные. В каждой клетке квадрата 8×8 клеток проведена одна из диагоналей. Рассмотрим объединение этих 64 диагоналей. Оно состоит из нескольких связных частей (к одной части относятся точки, между которыми можно пройти по одной или нескольким диагоналям). Может ли количество этих частей быть больше Рассматриваются всевозможные шестизвенные замкнутые ломаные, все вершины
которых лежат на окружности.
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа? |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
Какое наибольшее конечное число корней может иметь уравнение
где a1 , a2 , a50 , b1 , b2 , b50 – различные числа?
Многочлен P(x) степени n имеет n различных действительных корней. Какое наибольшее число его коэффициентов может равняться нулю?
На столе лежат n спичек (n > 1). Двое игроков по очереди снимают их со стола. Первым ходом игрок снимает со стола любое число спичек от 1 до n – 1, а дальше каждый раз можно брать со стола не больше спичек, чем взял предыдущим ходом партнер. Выигрывает тот, кто взял последнюю спичку. Найдите все n, при которых первый игрок может обеспечить себе выигрыш.
Назовём десятизначное число интересным, если оно делится на 11111 и все его цифры различны. Сколько существует интересных чисел?
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке