Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Все авторы >> Сендеров В.А.

Валерий Анатольевич Сендеров (1945 - 2014 гг.) - математик, педагог, с 70-х годов - постоянный участник проведения московских и российских математических олимпиад. Автор нескольких десятков научных статей в отечественных и зарубежных изданиях, научно-популярных работ в журнале Квант.

Фильтр
Сложность с по   Класс с по  
Выбрано 14 задач
Версия для печати
Убрать все задачи

В наборе имеется 100 гирь, каждые две из которых отличаются по массе не более чем на 20 г. Доказать, что эти гири можно положить на две чашки весов, по 50 штук на каждую, так, чтобы одна чашка весов была легче другой не более чем на 20 г.

Вниз   Решение


а) Докажите, что сумма углов при вершинах выпуклого n-угольника равна  (n - 2) . 180o.
б) Выпуклый n-угольник разрезан непересекающимися диагоналями на треугольники. Докажите, что количество этих треугольников равно n - 2.

ВверхВниз   Решение


Докажите, что окружность при осевой симметрии переходит в окружность.

ВверхВниз   Решение


Даны два многочлена от переменной x с целыми коэффициентами. Произведение их есть многочлен от переменной x с чётными коэффициентами, не все из которых делятся на 4. Доказать, что в одном из многочленов все коэффициенты чётные, а в другом – хоть один нечётный.

ВверхВниз   Решение


В клетках доски  n×n  произвольно расставлены числа от 1 до n². Докажите, что найдутся две такие соседние клетки (имеющие общую вершину или общую сторону), что стоящие в них числа отличаются не меньше чем на  n + 1.

ВверхВниз   Решение


Дан треугольник ABC. Построены четыре окружности равного радиуса $ \rho$ так, что одна из них касается трех других, а каждая из этих трех касается двух сторон треугольника. Найдите $ \rho$, если радиусы вписанной и описанной окружностей треугольника равны r и R соответственно.

ВверхВниз   Решение


На плоскости расположено n$ \ge$5 окружностей так, что любые три из них имеют общую точку. Докажите, что тогда и все окружности имеют общую точку.

ВверхВниз   Решение


Разрежьте произвольный треугольник на 3 части и сложите из них прямоугольник.

ВверхВниз   Решение


Дан четырехугольник ABCD. На стороне AB взята точка K, на стороне BC &8212; точка L, на стороне CD — точка M и на стороне AD — точка N, так, что KB = BL = a, MD = DN = b. Пусть KL $ \nparallel$ MN. Найти геометрическое место точек пересечения прямых KL и MN при изменении a и b.

ВверхВниз   Решение


Докажите, что если фигура имеет две перпендикулярные оси симметрии, то она имеет центр симметрии.

ВверхВниз   Решение


На клетчатой бумаге написана таблица, причём в каждой клетке стоит число, равное среднему арифметическому четырёх чисел, стоящих в соседних клетках. Все числа в таблице различны. Докажите, что наибольшее число стоит с края (то есть по крайней мере одна из соседних клеток отсутствует).

ВверхВниз   Решение


а) Даны прямые a, b, c, d, проходящие через одну точку, и прямая l, через эту точку не проходящая. Пусть A, B, C, D — точки пересечения прямой l с прямыми a, b, c, d соответственно. Докажите, что (abcd )= (ABCD).
б) Докажите, что двойное отношение четверки точек сохраняется при проективных преобразованиях.

ВверхВниз   Решение


Сумма четырех единичных векторов равна нулю. Докажите, что их можно разбить на две пары противоположных векторов.

ВверхВниз   Решение


В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

Вверх   Решение

Все задачи автора

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



Задача 98318

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Существуют ли три таких различных простых числа p, q, r, что  p² + d  делится на qr,  q² + d  делится на rp,  r² + d  делится на pq, если
  а)  d = 10,
  б)  d =11?

Прислать комментарий     Решение

Задача 98427

Темы:   [ Периодичность и непериодичность ]
[ Линейные рекуррентные соотношения ]
Сложность: 3
Классы: 7,8,9

В ряд стоят 1999 чисел. Первое число равно 1. Известно, что каждое число, кроме первого и последнего, равно сумме двух соседних.
Найдите последнее число.

Прислать комментарий     Решение

Задача 105065

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 8,9,10,11

a, b, c – стороны треугольника. Докажите неравенство  

Прислать комментарий     Решение

Задача 105127

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Разложение на множители ]
[ Алгебраические неравенства (прочее) ]
Сложность: 3
Классы: 7,8,9

Пусть a, b, c – стороны треугольника. Докажите неравенство  a³ + b³ + 3abc > c³.

Прислать комментарий     Решение

Задача 116546

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Разложение на множители ]
[ Уравнения в целых числах ]
Сложность: 3
Классы: 8,9

Найдите все такие тройки простых чисел p, q, r, что четвёртая степень каждого из них, уменьшенная на 1, делится на произведение двух остальных.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 90]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .