|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Интернет-ресурсы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Через вершину B треугольника ABC проведена прямая, перпендикулярная медиане BM. Эта прямая пересекает высоты, выходящие из вершин A и C (или их продолжения), в точках K и N. Точки O1 и O2 – центры описанных окружностей треугольников ABK и CBN соответственно. Докажите, что O1M = O2M. |
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 7526]
На острове ⅔ всех мужчин женаты и ⅗ всех женщин замужем. Какая доля населения острова состоит в браке?
Точки M и N – середины противоположных сторон BC и AD выпуклого четырёхугольника ABCD. Диагональ AC проходит через середину отрезка MN. Докажите, что треугольники ABC и ACD равновелики.
Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
В треугольнике одна сторона в три раза меньше суммы двух других. Докажите, что против этой стороны лежит наименьший угол треугольника.
В треугольнике ABC угол C – прямой. Из центра C
радиусом AC описана дуга, пересекающая гипотенузу в точке D, а катет CB – в точке E.
Страница: << 142 143 144 145 146 147 148 >> [Всего задач: 7526] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|