|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи На доске написаны несколько чисел. Известно, что квадрат каждого записанного числа больше произведения любых двух других записанных чисел. Какое наибольшее количество чисел может быть на доске? На плоскости даны шесть точек так, что никакие три из них не лежат на одной прямой. Каждая пара точек соединена отрезком синего или красного цвета. Докажите, что среди данных точек можно выбрать такие три, что все стороны образованного ими треугольника будут окрашены в один цвет. |
Страница: 1 2 >> [Всего задач: 6]
Решите ребус: БАО×БА×Б = 2002.
На доске были написаны 10 последовательных натуральных чисел. Когда стёрли
одно из них, то сумма девяти оставшихся оказалась равна 2002.
Побейте его рекорд — закрасьте а) 32 клетки; б) 33 клетки.
Страница: 1 2 >> [Всего задач: 6] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|