ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC M – точка пересечения медиан, O – центр вписанной окружности, A', B', C' – точки ее касания со сторонами BC, CA, AB соответственно. Докажите, что, если CA' = AB, то прямые OM и AB перпендикулярны.
В равнобедренную трапецию ABCD ( AB=CD ) вписана
окружность. Пусть M – точка касания окружности
со стороной CD , K – точка пересечения окружности
с отрезком AM , L – точка пересечения окружности с
отрезком BM . Вычислите величину На плоскости даны 16 точек (см. рисунок). а) Покажите, что можно стереть не более восьми из них так, что из оставшихся никакие четыре не будут лежать в вершинах квадрата. Дана бесконечная последовательность многочленов P1(x), P2(x), ... . Всегда ли существует конечный набор функций f1(x), f2(x), ..., fN(x), композициями которых можно записать любой из них (например, P1(x) = f2(f1(f2(x))))? |
Страница: 1 2 >> [Всего задач: 6]
В плоскости расположено 11 шестерёнок таким образом, что первая сцеплена со второй, вторая – с третьей, ..., одиннадцатая – с первой.
Четыре кузнечика сидят в вершинах квадрата. Каждую минуту один из них прыгает в точку, симметричную ему относительно другого кузнечика. Докажите, что кузнечики не могут в некоторый момент оказаться в вершинах квадрата большего размера.
Можно ли замостить доминошками 1×2 шахматную доску 8×8, из которой
вырезаны
Может ли прямая, не содержащая вершин замкнутой 11-звенной ломаной, пересекать все её звенья?
а) Докажите, что число точек пересечения двух замкнутых ломаных на плоскости, находящихся в общем положении, чётно.
Страница: 1 2 >> [Всего задач: 6]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке